@@ -3,10 +3,16 @@ SVD on blockmatrices:
3
3
Interpret the matrix as a linear map acting on vector spaces with a direct sum structure, which is reflected in the structure of U and V.
4
4
In the generic case, the SVD does not preserve this structure, and can mix up the blocks, so S becomes a single block.
5
5
(Implementation-wise, also most efficiently done by first mapping to a `BlockedArray`)
6
+ In the case of `BlockDiagonal` however, the structure is preserved and carried over to the structure of `S`.
6
7
=#
7
8
8
9
LinearAlgebra. eigencopy_oftype (A:: AbstractBlockMatrix , S) = BlockedArray (Array {S} (A), blocksizes (A, 1 ), blocksizes (A, 2 ))
9
10
11
+ function LinearAlgebra. eigencopy_oftype (A:: BlockDiagonal , S)
12
+ diag = map (Base. Fix2 (LinearAlgebra. eigencopy_oftype, S), A. blocks. diag)
13
+ return BlockDiagonal (diag)
14
+ end
15
+
10
16
function LinearAlgebra. svd! (A:: BlockedMatrix ; full:: Bool = false , alg:: LinearAlgebra.Algorithm = default_svd_alg (A))
11
17
USV = svd! (parent (A); full, alg)
12
18
@@ -19,3 +25,11 @@ function LinearAlgebra.svd!(A::BlockedMatrix; full::Bool=false, alg::LinearAlgeb
19
25
vt = BlockedArray (USV. Vt, bsz2, bsz3)
20
26
return SVD (u, s, vt)
21
27
end
28
+
29
+ function LinearAlgebra. svd! (A:: BlockDiagonal ; full:: Bool = false , alg:: LinearAlgebra.Algorithm = default_svd_alg (A))
30
+ USVs = map (a -> svd! (a; full, alg), A. blocks. diag)
31
+ Us = map (Base. Fix2 (getproperty, :U ), USVs)
32
+ Ss = map (Base. Fix2 (getproperty, :S ), USVs)
33
+ Vts = map (Base. Fix2 (getproperty, :Vt ), USVs)
34
+ return SVD (BlockDiagonal (Us), mortar (Ss), BlockDiagonal (Vts))
35
+ end
0 commit comments