Open
Description
Hi guys, I'm trying to figure out how to create a multivariate approximation to a nonlinear function dfx
, but can't quite understand the multivariate interface. Below is an attempt at creating an order 7 approximation, but the two nonlinear equations get approximated linearly only. What am I doing wrong?
using TaylorModels
function dxf(xs, us)
[
xs[3]
xs[4]
-0.8333333333333334((0.1(0.9810000000000001sin(xs[2]) - 0.08333333333333334(-us[1] - 0.1(xs[4]^2)*sin(xs[2]))*cos(xs[2]))*cos(xs[2])) / (0.008333333333333335(cos(xs[2])^2) - 0.05) - us[1] - 0.1(xs[4]^2)*sin(xs[2]))
(0.9810000000000001sin(xs[2]) - 0.08333333333333334(-us[1] - 0.1(xs[4]^2)*sin(xs[2]))*cos(xs[2])) / (0.008333333333333335(cos(xs[2])^2) - 0.05)
]
end
nx = 4; nu = 1
taylor_expand(zeros(nx+nu); order=7) do xu
xs = xu[1:4]
us = xu[5]
dxf(xs, u)
end
4-element Vector{TaylorN{Float64}}:
1.0 x₃ + 𝒪(‖x‖⁸)
1.0 x₄ + 𝒪(‖x‖⁸)
1.9620000000000002 x₂ + 1.0 x₅ + 𝒪(‖x‖²)
- 23.544 x₂ - 2.0 x₅ + 𝒪(‖x‖²)
Metadata
Metadata
Assignees
Labels
No labels