|
| 1 | +using InfiniteLinearAlgebra, BlockBandedMatrices, LinearAlgebra, Test |
| 2 | + |
1 | 3 | @testset "periodic" begin
|
2 |
| - A = BlockTridiagonal(Vcat([[0. 1.; 0. 0.]],Fill([0. 1.; 0. 0.], ∞)), |
3 |
| - Vcat([[-1. 1.; 1. 1.]], Fill([-1. 1.; 1. 1.], ∞)), |
4 |
| - Vcat([[0. 0.; 1. 0.]], Fill([0. 0.; 1. 0.], ∞))) |
5 |
| - |
6 |
| - |
7 |
| - Q,L = ql(A); |
8 |
| - @test Q.factors isa InfiniteLinearAlgebra.InfBlockBandedMatrix |
9 |
| - Q̃,L̃ = ql(BlockBandedMatrix(A)[Block.(1:100),Block.(1:100)]) |
10 |
| - |
11 |
| - @test Q̃.factors[1:100,1:100] ≈ Q.factors[1:100,1:100] |
12 |
| - @test Q̃.τ[1:100] ≈ Q.τ[1:100] |
13 |
| - @test L[1:100,1:100] ≈ L̃[1:100,1:100] |
14 |
| - @test Q[1:10,1:10] ≈ Q̃[1:10,1:10] |
15 |
| - @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10] |
16 |
| - |
17 |
| - # complex non-selfadjoint |
18 |
| - c,a,b = [0 0.5; 0 0],[0 2.0; 0.5 0],[0 0.0; 2.0 0]; |
19 |
| - A = BlockTridiagonal(Vcat([c], Fill(c,∞)), |
20 |
| - Vcat([a], Fill(a,∞)), |
21 |
| - Vcat([b], Fill(b,∞))) - 5im*I |
22 |
| - Q,L = ql(A) |
23 |
| - @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10] |
24 |
| - |
25 |
| - c,a,b = [0 0.5; 0 0],[0 2.0; 0.5 0],[0 0.0; 2.0 0]; |
26 |
| - A = BlockTridiagonal(Vcat([c], Fill(c,∞)), |
27 |
| - Vcat([a], Fill(a,∞)), |
28 |
| - Vcat([b], Fill(b,∞))) |
29 |
| - Q,L = ql(A) |
30 |
| - @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10] |
31 |
| - @test L[1,1] == 0 # degenerate |
32 |
| - |
33 |
| - |
34 |
| - Q,L = ql(A') |
35 |
| - @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10]' |
36 |
| - @test L[1,1] ≠ 0 # non-degenerate |
| 4 | + @testset "single-∞" begin |
| 5 | + A = BlockTridiagonal(Vcat([[0. 1.; 0. 0.]],Fill([0. 1.; 0. 0.], ∞)), |
| 6 | + Vcat([[-1. 1.; 1. 1.]], Fill([-1. 1.; 1. 1.], ∞)), |
| 7 | + Vcat([[0. 0.; 1. 0.]], Fill([0. 0.; 1. 0.], ∞))) |
| 8 | + |
| 9 | + |
| 10 | + Q,L = ql(A); |
| 11 | + @test Q.factors isa InfiniteLinearAlgebra.InfBlockBandedMatrix |
| 12 | + Q̃,L̃ = ql(BlockBandedMatrix(A)[Block.(1:100),Block.(1:100)]) |
| 13 | + |
| 14 | + @test Q̃.factors[1:100,1:100] ≈ Q.factors[1:100,1:100] |
| 15 | + @test Q̃.τ[1:100] ≈ Q.τ[1:100] |
| 16 | + @test L[1:100,1:100] ≈ L̃[1:100,1:100] |
| 17 | + @test Q[1:10,1:10] ≈ Q̃[1:10,1:10] |
| 18 | + @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10] |
| 19 | + |
| 20 | + # complex non-selfadjoint |
| 21 | + c,a,b = [0 0.5; 0 0],[0 2.0; 0.5 0],[0 0.0; 2.0 0]; |
| 22 | + A = BlockTridiagonal(Vcat([c], Fill(c,∞)), |
| 23 | + Vcat([a], Fill(a,∞)), |
| 24 | + Vcat([b], Fill(b,∞))) - 5im*I |
| 25 | + Q,L = ql(A) |
| 26 | + @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10] |
| 27 | + |
| 28 | + c,a,b = [0 0.5; 0 0],[0 2.0; 0.5 0],[0 0.0; 2.0 0]; |
| 29 | + A = BlockTridiagonal(Vcat([c], Fill(c,∞)), |
| 30 | + Vcat([a], Fill(a,∞)), |
| 31 | + Vcat([b], Fill(b,∞))) |
| 32 | + Q,L = ql(A) |
| 33 | + @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10] |
| 34 | + @test abs(L[1,1] ) ≤ 1E-11 # degenerate |
| 35 | + |
| 36 | + |
| 37 | + Q,L = ql(A') |
| 38 | + @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10]' |
| 39 | + @test L[1,1] ≠ 0 # non-degenerate |
| 40 | + end |
| 41 | + |
| 42 | + @testset "bi" begin |
| 43 | + B = [ 0 0 1 0; |
| 44 | + 0 0 0 1; |
| 45 | + 0 0 0 0; |
| 46 | + 0 0 0 0]/2 |
| 47 | + A₀ = [ 1 1/2 1/2 0 ; |
| 48 | + 1/2 -1 0 1/2; |
| 49 | + 1/2 0 -1 0 ; |
| 50 | + 0 1/2 0 1] |
| 51 | + A = [ 1 0 1/2 0 ; |
| 52 | + 0 -1 0 1/2 ; |
| 53 | + 1/2 0 -1 0 ; |
| 54 | + 0 1/2 0 1 ] |
| 55 | + |
| 56 | + A = BlockTridiagonal(Vcat([B],Fill(B, ∞)), |
| 57 | + Vcat([A₀], Fill(A, ∞)), |
| 58 | + Vcat([copy(B')], Fill(copy(B'), ∞))) |
| 59 | + Q,L = ql(A) |
| 60 | + @test Q[1:10,1:12]*L[1:12,1:10] ≈ A[1:10,1:10] |
| 61 | + end |
37 | 62 | end
|
0 commit comments