Before: ```math \begin{align} \frac{\mathrm{d} u\left( t \right)_{1}}{\mathrm{d}t} &= p_{3} \left( - u\left( t \right)_{1} + u\left( t \right)_{2} \right) \\ 0 &= - u\left( t \right)_{2} + \frac{1}{10} \left( p_{1} - u\left( t \right)_{1} \right) p_{2} p_{3} u\left( t \right)_{1} \\ \frac{\mathrm{d} u\left( t \right)_{3}}{\mathrm{d}t} &= \left( u\left( t \right)_{2} \right)^{\frac{2}{3}} u\left( t \right)_{1} - p_{3} u\left( t \right)_{3}\ \end{align} ``` After: ```math \begin{align} \ \frac{\mathrm{d} u\_{1}\left( t \right)}{\mathrm{d}t} &= p_{3} \left( - u\_{1}\left( t \right) + u\_{2}\left( t \right) \right) \\ 0 &= - u\_{2}\left( t \right) + \frac{1}{10} \left( p_{1} - u\_{1}\left( t \right) \right) p_{2} p_{3} u\_{1}\left( t \right) \\ \frac{\mathrm{d} u\_{3}\left( t \right)}{\mathrm{d}t} &= u\_{2}\left( t \right)^{\frac{2}{3}} u\_{1}\left( t \right) - p_{3} u\_{3}\left( t \right)\\ \end{align} ``` Is this intentional? It's incredibly inconsistent