-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
167 lines (144 loc) · 5.41 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import time
import glob
import os
import random
from pathlib import Path
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import Dataset
# Normalization parameters for pre-trained PyTorch models
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
class Dataset(Dataset):
def __init__(
self,
dataset_path,
split_path,
split_number,
input_shape,
sequence_length,
training,
):
self.label_mapping = self._extract_label_mapping(split_path)
self.sequence_paths = self._extract_sequence_paths(
dataset_path, split_path, split_number, training
)
self.label_names = sorted(
list(set([self._activity_from_path(seq_path) \
for seq_path in self.sequence_paths]))
)
self.num_classes = len(self.label_names)
self.sequence_length = sequence_length
self.training = training
self.transform = transforms.Compose(
[
transforms.Resize(input_shape[-2:], Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
)
def _extract_label_mapping(self, split_path):
""" Extracts a mapping between activity name and softmax index """
# read classInd.txt
split_path = Path(split_path)
label_path = split_path / "classInd.txt"
with open(label_path.as_posix()) as f:
lines = f.read().splitlines()
# create label mappings
label_mapping = {}
for line in lines:
label, action = line.split()
label_mapping[action] = int(label) - 1
return label_mapping
def _extract_sequence_paths(
self,
dataset_path,
split_path,
split_number=1,
training=True,
):
""" Extracts paths to sequences given the specified train / test split """
assert split_number in [1, 2, 3], "Split number has to be one of {1, 2, 3}"
split_file = (
f"trainlist0{split_number}.txt"
if training
else f"testlist0{split_number}.txt"
)
split_path = Path(split_path)
split_file_path = split_path / split_file
# read split file
with open(split_file_path.as_posix()) as f:
lines = f.read().splitlines()
# delete no frames
if "PlayingGuitar/v_PlayingGuitar_g21_c02.avi 63" in lines:
lines.remove("PlayingGuitar/v_PlayingGuitar_g21_c02.avi 63")
# create sequence paths
sequence_paths = []
for line in lines:
action_video_name = Path(line.split(" ")[0])
seq_name = action_video_name.with_suffix("")
sequence_paths += [(Path(dataset_path) / seq_name).as_posix()]
return sequence_paths
def _activity_from_path(self, path):
""" Extracts activity name from filepath """
activity = path.split("/")[-2]
return activity
def _frame_number(self, image_path):
""" Extracts frame number from filepath """
frame_number = int(Path(image_path).stem)
return frame_number
def _pad_to_length(self, sequence):
""" Pads the sequence to required sequence length """
left_pad = sequence[0]
if self.sequence_length is not None:
while len(sequence) < self.sequence_length:
sequence.insert(0, left_pad)
return sequence
def __getitem__(self, index):
# Set index in mini-batch
sequence_path = self.sequence_paths[index]
# Sort frame sequence based on frame number
image_paths = sorted(
glob.glob(f"{sequence_path}/*.jpg"),
key=lambda path: self._frame_number(path),
)
# Pad frames sequences shorter than `self.sequence_length` to length
image_paths = self._pad_to_length(image_paths)
if self.training:
# Randomly choose sample interval and start frame
sample_interval = np.random.randint(
1, len(image_paths) // self.sequence_length + 1
)
start_i = np.random.randint(
0, len(image_paths) - sample_interval * self.sequence_length + 1
)
flip = np.random.random() < 0.5
else:
# Start at first frame and sample uniformly over sequence
start_i = 0
sample_interval = (
1
if self.sequence_length is None
else len(image_paths) // self.sequence_length
)
flip = False
# Extract frames as tensors
image_sequence = []
for i in range(start_i, len(image_paths), sample_interval):
# Append up to sequence_length
if (
self.sequence_length is None
or len(image_sequence) < self.sequence_length
):
image = Image.open(image_paths[i])
image_tensor = self.transform(image)
if flip:
image_tensor = torch.flip(image_tensor, (-1,))
image_sequence.append(image_tensor)
image_sequence = torch.stack(image_sequence)
target = self.label_mapping[self._activity_from_path(sequence_path)]
return image_sequence, target
def __len__(self):
return len(self.sequence_paths)