-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
180 lines (139 loc) · 5.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import random
import networkx as nx
from recommendation import recommend_by_influence as rif
from recommendation import recommend_by_number_of_common_friends as rcf
CHARACTERS = [
"Nurse",
"Juliet",
"Capulet",
"Tybalt",
"Friar Laurence",
"Romeo",
"Benvolio",
"Montague",
"Escalus",
"Mercutio",
"Paris",
]
RELATIONSHIPS = [
("Nurse", "Juliet"),
("Juliet", "Tybalt"),
("Juliet", "Friar Laurence"),
("Juliet", "Romeo"),
("Juliet", "Capulet"),
("Capulet", "Tybalt"),
("Capulet", "Escalus"),
("Capulet", "Paris"),
("Romeo", "Friar Laurence"),
("Romeo", "Benvolio"),
("Romeo", "Montague"),
("Romeo", "Mercutio"),
("Benvolio", "Montague"),
("Montague", "Escalus"),
("Escalus", "Mercutio"),
("Escalus", "Paris"),
("Mercutio", "Paris"),
]
ALGORITHMS = ["recommend_by_number_of_common_friends", "recommend_by_influence"]
def algorithm_difference(graph, nodes, results_filename):
"""Identify if the algorithm results are different."""
same = 0
different = 0
with open(results_filename, "w") as file:
for node in nodes:
if rcf(graph, node) == rif(graph, node):
same += 1
file.write("Same\n")
else:
different += 1
file.write("Different\n")
file.write("\n")
file.write(f"Same: {same}\n")
file.write(f"Different: {different}\n")
def average_ranking(user1, user2, user1_recommendations, user2_recommendations):
"""Return the average ranking of two users from their recommendations."""
if user1 in user2_recommendations and user2 in user1_recommendations:
user1_rank = user2_recommendations.index(user1) + 1
user2_rank = user1_recommendations.index(user2) + 1
return (user1_rank + user2_rank) / 2
return None
def get_user_recommendations(graph, user, algorithm):
"""Return user recommendations based on algorithm."""
if algorithm == ALGORITHMS[0]:
return rcf(graph, user)
return rif(graph, user)
def algorithms_average(graph, user1, user2):
"""Return recommendation algorithm average scores."""
common_average = 0
influence_average = 0
for algorithm in ALGORITHMS:
user1_recommendations = get_user_recommendations(graph, user1, algorithm)
user2_recommendations = get_user_recommendations(graph, user2, algorithm)
average = average_ranking(
user1, user2, user1_recommendations, user2_recommendations
)
if average is None:
return None
if algorithm == ALGORITHMS[0]:
common_average = average
else:
influence_average = average
return {ALGORITHMS[0]: common_average, ALGORITHMS[1]: influence_average}
def compare_algorithms(graph, edges):
"""Compare algorithms and return the better one with average performace for each."""
edge = random.choice(edges)
user1 = edge[0]
user2 = edge[1]
graph.remove_edge(user1, user2)
average_results = algorithms_average(graph, user1, user2)
graph.add_edge(user1, user2)
better_algorithm = None
if not average_results:
return better_algorithm
common_friends_average = average_results["recommend_by_number_of_common_friends"]
influence_average = average_results["recommend_by_influence"]
if common_friends_average < influence_average:
better_algorithm = ALGORITHMS[0]
if influence_average < common_friends_average:
better_algorithm = ALGORITHMS[1]
return {
"better_algorithm": better_algorithm,
"common_friends_average": common_friends_average,
"influence_average": influence_average,
}
def algorithm_analysis(graph, edges, results_filename):
"""Generate a report on the results of both algorithms."""
common_friends_algorithm = 0
influence_algorithm = 0
neither_algorithm = 0
with open(results_filename, "w") as file:
for _ in range(1, 101):
result = compare_algorithms(graph, edges)
if result is None:
neither_algorithm += 1
continue
file.write(
f"Average rank common friends algorithm: {result['common_friends_average']}\n"
)
file.write(
f"Average rank influence algorithm: {result['influence_average']}\n"
)
if result["better_algorithm"] == ALGORITHMS[0]:
common_friends_algorithm += 1
file.write(f"Number of common friends algorithm is better\n")
if result["better_algorithm"] == ALGORITHMS[1]:
influence_algorithm += 1
file.write(f"Influence algorithm is better\n")
if result["better_algorithm"] is None:
neither_algorithm += 1
file.write(f"None is better\n")
file.write("\n")
file.write(f"Number of common friends algorithm: {common_friends_algorithm}\n")
file.write(f"Influence algorithm: {influence_algorithm}\n")
file.write(f"Neutral: {neither_algorithm}\n")
if __name__ == "__main__":
rj_graph = nx.Graph()
rj_graph.add_nodes_from(CHARACTERS)
rj_graph.add_edges_from(RELATIONSHIPS)
algorithm_difference(rj_graph, CHARACTERS, "results/rj_algorithm_diff.txt")
algorithm_analysis(rj_graph, RELATIONSHIPS, "results/rj_algorithm_analysis.txt")