-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathbuild_benchmark_md.py
196 lines (158 loc) · 8.13 KB
/
build_benchmark_md.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""
This script builds a `<dataset>_benchmark.md` file which aggregates the results saved on disk.
It searches for recursively for all results in a root directory, computes the trajectory error, ranks the results,
And display writes the `nhcd_benchmark.md` files which contains the table aggregating all the results.
If many trajectories need to be evaluated, this script can take a long time.
"""
import sys
import os
from dataclasses import dataclass
import hydra
from hydra.core.config_store import ConfigStore
from slam.common.io import *
from slam.eval.eval_odometry import *
@dataclass
class BenchmarkBuilderConfig:
root_dir: str = "."
dataset: str = "kitti"
output_dir: str = ".benchmark"
cs = ConfigStore.instance()
cs.store(name="benchmark", node=BenchmarkBuilderConfig)
def load_dataset(dataset: str) -> tuple:
_datasets = ["kitti", "nhcd", "ford_campus", "nclt", "kitti_360", "ct_icp_kitti", "ct_icp_kitti_carla"]
assert_debug(dataset in _datasets,
f"The dataset {dataset} is not supported")
if dataset == "kitti":
return "KITTI", [f"{i:02}" for i in range(11)]
if dataset == "kitti_360":
return "KITTI_360", ["0", "2", "3", "4", "5", "6", "7", "9", "10"]
if dataset == "nhcd":
return "Newer Handheld College Dataset", ["01_short_experiment", "02_long_experiment"]
if dataset == "nclt":
return "NCLT Long Pose Dataset", ["2012-01-08", "2012-01-15", "2012-01-22", "2013-01-10"]
if dataset == "ford_campus":
return "Ford Campus Dataset", ["dataset-1", "dataset-2"]
if dataset == "ct_icp_kitti":
return "KITTI_raw", [f"{i:02}" for i in range(11) if i != 3]
if dataset == "ct_icp_kitti_carla":
return "KITTI_CARLA", [f"Town{i + 1:02}" for i in range(7)]
@hydra.main(config_path=None, config_name="benchmark")
def build_benchmark(cfg: BenchmarkBuilderConfig) -> None:
"""Builds the benchmark"""
root_dir = cfg.root_dir
dataset = cfg.dataset
dataset_name, folder_names = load_dataset(dataset)
metrics = {} # map root_path -> computed metrics
# Recursively search all child directories for folder with the appropriate name
directory_list = [x[0] for x in os.walk(root_dir)] # Absolute paths
output_root = Path(cfg.output_dir)
if not output_root.exists():
output_root.mkdir()
for new_dir in directory_list:
is_metrics_dir = False
new_dir_path = Path(new_dir)
for folder in folder_names:
if (new_dir_path / folder).exists():
is_metrics_dir = True
if is_metrics_dir:
# New entry found compute and add the metrics for each sequence
new_metrics = {}
has_all_sequences = True
for sequence_name in folder_names:
sequence_path = new_dir_path / sequence_name
poses_file = sequence_path / f"{sequence_name}.poses.txt"
gt_poses_file = sequence_path / f"{sequence_name}_gt.poses.txt"
if poses_file.exists() and gt_poses_file.exists():
if not new_metrics:
print(f"[INFO]Found a results directory at {new_dir}")
print(f"[INFO]Computing trajectory error for sequence {sequence_name}")
# Can compute metrics on both files
gt_poses = read_poses_from_disk(gt_poses_file)
poses = read_poses_from_disk(poses_file)
# Try to read the configuration files and metrics
metrics_yaml = sequence_path / "metrics.yaml"
time_ms = -1.0
if metrics_yaml.exists():
with open(str(metrics_yaml), "r") as stream:
metrics_dict = yaml.safe_load(stream)
if sequence_name in metrics_dict and "nsecs_per_frame" in metrics_dict[sequence_name]:
time_ms = float(metrics_dict[sequence_name]["nsecs_per_frame"]) * 1000.0
tr_err, rot_err, errors = compute_kitti_metrics(poses, gt_poses)
new_metrics[sequence_name] = {
"tr_err": tr_err,
"rot_err": rot_err,
"errors": errors,
"average_time": time_ms
}
else:
has_all_sequences = False
if new_metrics:
if has_all_sequences:
# Compute the average errors
_errors = []
for seq_metrics in new_metrics.values():
_errors += seq_metrics["errors"]
seq_metrics.pop("errors")
avg_tr_err = sum([error["tr_err"][0] for error in _errors]) / len(_errors)
new_metrics["AVG_tr_err"] = avg_tr_err * 100
new_metrics["AVG_time"] = sum([new_metrics[seq]["average_time"] for seq in folder_names]) / len(
folder_names)
else:
new_metrics["AVG_tr_err"] = -1.0
new_metrics["AVG_time"] = -1.0
# Try to read the config to find a git_hash
config_path = new_dir_path / "config.yaml"
if config_path.exists():
with open(str(config_path), "r") as stream:
config_dict = yaml.safe_load(stream)
if "git_hash" in config_dict:
new_metrics["git_hash"] = config_dict["git_hash"]
new_metrics["has_all_sequences"] = has_all_sequences
metrics[new_dir] = new_metrics
# Try and load the overrides
overrides_file = new_dir_path / ".hydra" / "overrides.yaml"
if overrides_file.exists():
with open(str(overrides_file), "r") as stream:
overrides_list = yaml.safe_load(stream)
command_line = "`python run.py " + " ".join(overrides_list) + "`"
new_metrics["command"] = command_line
# Build the nhcd_benchmark.md table
db_metrics = [(path,
entry_metrics["AVG_tr_err"],
entry_metrics["has_all_sequences"]) for path, entry_metrics in metrics.items()]
db_metrics.sort(key=lambda x: x[1] if x[2] else float("inf"))
# Build the list
header = [f"## {dataset_name} Benchmark:\n\n\n"]
main_table_lines = ["#### Sorted trajectory error on all sequences:\n",
f"| **Sequence Folder**|{' | '.join(folder_names)} | AVG | AVG Time (ms) |\n",
"| ---: " * (len(folder_names) + 3) + "|\n"]
command_lines = ["#### Command Lines for each entry\n",
f"| **Sequence Folder** | Command Line | git hash |\n",
"| ---: | ---: | ---: |\n"]
for entry in db_metrics:
path, avg, add_avg = entry
path_id = os.path.split(path)[1]
_metrics = metrics[path]
avg_time = _metrics["AVG_time"]
columns = ' | '.join(
[f"{float(_metrics[seq]['tr_err']) * 100:.4f}" if seq in _metrics else '' for seq in folder_names])
path_link = f"[{path_id}]({str(Path(path).resolve())})"
line = f"| {path_link} | {columns} | {f'{avg:.4f}' if add_avg else ''} | {f'{avg_time:.3f}'} |\n"
main_table_lines.append(line)
command_lines.append(
f"| {path_link} | {_metrics['command'] if 'command' in _metrics else ''} | {_metrics['git_hash'] if 'git_hash' in _metrics else ''}|\n")
output_file = str(output_root / f"{dataset_name}_benchmark.md")
with open(output_file, "w") as stream:
stream.writelines(header)
stream.write("\n\n")
stream.writelines(main_table_lines)
stream.write("\n\n")
stream.writelines(command_lines)
if __name__ == "__main__":
# Set the working directory to current directory
sys.argv.append(f'hydra.run.dir={os.getcwd()}')
# Disable logging
sys.argv.append("hydra/hydra_logging=disabled")
sys.argv.append("hydra/job_logging=disabled")
sys.argv.append("hydra.output_subdir=null")
build_benchmark()