-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemo.m
284 lines (187 loc) · 9.2 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
%% Demo code for DGTtool (MATLAB 2020b or later is required)
%
% This code is written for demonstrating the usage of DGTtool.
% All functions implemented in DGTtool are shown in this demo.
% MATLAB 2020b or later and Signal Processing Toolbox are required.
%
% - What is DGTtool?
% It is a compact tool for computing the short-time Fourier transform (STFT).
% (Note: STFT is a special case of the discrete Gabor transform, DGT.)
% DGTtool is designed for easy and practical computation of STFT/DGT.
% Many unnecessary pre- and post-computations for math are omitted for speed.
% An object-based implementation is chosen for a user-friendly interface.
%
% - Who should use DGTtool?
% DGTtool can be a good choice for the following persons:
% 1. A MATLAB user who doesn't want to use MEX (C language).
% 2. A STFT/DGT user who wants a simple and user-friendly tool.
% 3. A STFT/DGT user who repeatedly runs STFT/DGT in an iterative algorithm.
% 4. A STFT/DGT user who frequently handles multi-channel signals.
%
% - What is different from other STFT functions?
% The following features of DGTtool might be different from the others:
% 1. Parameters are stored inside DGTtool object for user-friendliness.
% 2. All pre-computation runs only once so that repeated use is fast.
% 3. Many computations run in parallel for all channels.
% 4. Perfect reconstruction is very easily realized.
% 5. FFTnum can be smaller than the window length.
% 6. Dual and tight windows can be computed easily.
% 7. Sparse representation (reassigned spectrogram) is implemented.
% 8. Phase visualization (plotPhase) is implemented.
% 9. STFT/DGT can be written in an operator form.
%
% - Why is DGTtool written?
% There were mainly two reasons for writing DGTtool.
% One was that existing tools seem either too simple or too sophisticated.
% Some tools don't have enough functionality for perfect reconstruction.
% This is especially true when FFTnum is less than the window length.
% Other tools having rich functionality seems not so friendly for a beginner.
% Therefore, DGTtool is written so that everyone can easily use it.
% The second reason was demonstration for students learning signal processing.
% DGTtool is a supplemental material of the monthly tutorial of STFT/DGT
% published serially in the Journal of the Acoustical Society of Japan (ASJ).
%
% - Who wrote DGTtool?
% Dr. Kohei Yatabe wrote DGTtool in June 2021.
%% Check MATLAB version
try
if isMATLABReleaseOlderThan('R2021a')
warning 'MATLAB 2021a or later is recommended for plot functions in DGTtool.'
end
catch
error 'MATLAB 2020b or later is required for DGTtool.'
end
%% Load demo signal (female speech with sampling frequency 7418 Hz)
load mtlb
inputSignal = mtlb;
%% Create DGTtool object
% Some of the options can be omitted (default values will be used).
% The order of the options is not restricted (any order is acceptable).
% The list of available windows can be obtained by DGTtool.windowList.
% The window name can be shortened (e.g. 'b' is acceptable instead of 'Blackman').
F = DGTtool('windowShift',20,'windowLength',250,'FFTnum',400,'windowName','Blackman')
% If MATLAB version is 2021a or later, the following syntax can be used.
% F = DGTtool(windowShift=20,windowLength=250,FFTnum=400,windowName='Blackman')
%% Compute spectrogram
% The input signal must be a column vector.
% The input signal can be multi-channel (samples x channels).
% Normalized frequency f and sample index t can be obtained as follows:
% [X,f,t] = F(x)
X = F(inputSignal);
%% Plot spectrogram
% Plot spectrogram. The sampling frequency can be omitted: F.plot(x).
% Note: Plot functions can be used directly after defining F.
F.plot(inputSignal,Fs)
%% Convert back to the time domain (perfect reconstruction)
% The spectrogram X must be obtained by F(x).
% Note: Modified X is acceptable, but its size must be the same as F(x).
% The obtained time-domain signal x may be longer than the original input
% because necessary zero-padding may occur during the transformation.
x = F.pinv(X);
% Plot reconstruction error that is numerically zero (in the order of eps)
% figure, plot(inputSignal - x(1:length(inputSignal)))
%% Change the window
% Plot the windows. The dual window was calculated when F.pinv was performed.
F.plotWin
% Check available window functions.
DGTtool.windowList
% Change the window to Nuttall (4-term, C^5). The dual window is deleted.
F.setWindow(300,'4termC5')
% Plot the windows. Windows that are not yet calculated will not appear.
F.plotWin
%% Change other settings
% Change window shift
F.shift = 25
% Change FFTnum
F.FFTnum = 500
% Change FFTnum based on redundancy
F.redundancy = 10
%% Check documentation
% Check help
help DGTtool
% Check help using Help browser
doc DGTtool
%% Transpose vs pseudo inverse
% Reset parameters
F = DGTtool('windowShift',20,'windowLength',250,'FFTnum',400,'windowName','Blackman')
% --- Case 1: Complex conjugate transpose ---
% Compute spectrogram and compute complex conjugate transpose of F
X = F(inputSignal); % with analysis window
x = F.H(X); % with analysis window
% The result should contain error.
relErr = norm(x(1:length(inputSignal))-inputSignal) / norm(inputSignal);
disp(['Relative error of transpose: ' num2str(relErr)])
% --- Case 2: Pseudo inverse ---
% Compute spectrogram and compute pseudo inverse of F
X = F(inputSignal); % with analysis window
x = F.pinv(X); % with canonical dual window of the analysis window
% The result should not contain error (must be at the level of eps).
relErr = norm(x(1:length(inputSignal))-inputSignal) / norm(inputSignal);
disp(['Relative error of pseudo inverse: ' num2str(relErr)])
% --- Case 3: Complex conjugate transpose with canonical tight window ---
% Compute canonical tight window
F.makeWindowTight
% Compute spectrogram and compute complex conjugate transpose of F
X = F(inputSignal); % with canonical tight window
x = F.H(X); % with canonical tight window
% The result should not contain error (must be at the level of eps)
% because the transpose coincide with the pseudo inverse in this case.
relErr = norm(x(1:length(inputSignal))-inputSignal) / norm(inputSignal);
disp(['Relative error of transpose w/ tight window: ' num2str(relErr)])
%% Compute reassigned spectrogram
% Reset parameters
F = DGTtool('windowShift',20,'windowLength',250,'FFTnum',400,'windowName','Blackman')
% Compute reassigned spectrogram
% This function can return several inner parameters as follows:
% [reassignedX,f,t,X,IF,GD,dXdt,dXdf] = F.reassign(x)
R = F.reassign(inputSignal);
%% Plot reassigned spectrogram
% Plot reassigned spectrogram. The sampling frequency can be omitted.
F.plotReassign(inputSignal,Fs)
%% Plot phase weighted with log-magnitude
% Change parameters so that phase can be better visualized
F = DGTtool('windowShift',5,'windowLength',400,'FFTnum',1000,'windowName','4termC5')
% Plot phase. The sampling frequency can be omitted.
% Note: 'windowShift' must be 1 for visualizing the phase without aliasing.
% Note: The linear phase component of the window is eliminated.
F.plotPhase(inputSignal,Fs)
%% Phase manipulation
% Remove linear phase component of the window
X = F.makeZeroPhase(X);
% Convert back to the original spectrogram
X = F.undoMakeZeroPhase(X);
% Change the definition of DGT (no shift for complex sinusoids)
X = F.changeDGTdef(X);
% Convert back to the original spectrogram
X = F.undoChangeDGTdef(X);
%% Useful functions (work without creating a DGTtool object)
% Check available window functions
DGTtool.windowList
% Compute window (and its differential)
% [win,diffWin] = DGTtool.getWindow(windowLength,windowName,options)
win = DGTtool.getWindow(1000,'4termC5');
% Compute canonical dual window
% dualWin = DGTtool.computeCanonicalDual(win,shift,FFTnum,sigLen);
dualWin = DGTtool.computeCanonicalDual(win,300,1000);
% Compute canonical tight window
% tightWin = DGTtool.computeCanonicalTight(win,shift,FFTnum,sigLen)
tightWin = DGTtool.computeCanonicalTight(win,300,1000);
% Compute numerical differential of a window
% diffWin = DGTtool.computeNumericalDiffWin(win,sigLen)
diffWin = DGTtool.computeNumericalDiffWin(win);
% Check whether a window pair is dual
% [trueFalse,relReconstErrorBound] = DGTtool.isdual(win1,win2,shift,FFTnum)
[tf,errBound] = DGTtool.isdual(win,dualWin,300,1000)
% Multi-channel zero-padding (number of added zero is specified)
% y = DGTtool.zeroPad(x,zeroNum)
x = DGTtool.zeroPad(inputSignal,9);
% Multi-channel zero-padding (length of output signal is specified)
% y = DGTtool.extendSignalByZeroPad(x,outputLength)
x = DGTtool.extendSignalByZeroPad(inputSignal,5000);
% Zero-padding necessary for the factor DGT algorithm (L = aN = bM)
% y = DGTtool.zeroPadForFactorDGT(x,shift,FFTnum,minLen)
x = DGTtool.zeroPadForFactorDGT(inputSignal,300,1000);
% Signal length necessary for the factor DGT algorithm (L = aN = bM)
% newLength = DGTtool.sigLenForFactorDGT(xLen,shift,FFTnum)
newLength = DGTtool.sigLenForFactorDGT(length(inputSignal),300,1000);