-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbacktesting.py
235 lines (188 loc) · 9.26 KB
/
backtesting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import pandas as pd
import numpy as np
import crypto_stream
import rf_model
import rf_model_2
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings('ignore')
MODEL_LIST = ['Random Forest Classifier - 1', 'Random Forest Classifier - 2']
def test():
portfolio_metrics, trade_metrics, portfolio_evaluation = main('BTC/USD', MODEL_LIST[0] ,'1m')
return portfolio_metrics, trade_metrics, portfolio_evaluation
def main(crypto, model_name, timeframe, inital_capital=100000.0, no_of_shares=10):
trading_signals_df, results, acc_score = get_prediction(crypto, model_name, timeframe)
signals_df = concat_prediction_signals(trading_signals_df, results)
portfolio_metrics = calculate_portfolio_metrics(signals_df, inital_capital, no_of_shares)
trade_metrics = calculate_trade_metrics(crypto, portfolio_metrics)
portfolio_evaluation = evaluate_portfolio_metrics(portfolio_metrics, trade_metrics)
return portfolio_metrics, trade_metrics, portfolio_evaluation
def concat_prediction_signals(trading_signals_df, results):
results['Entry/Exit'] = results['Predicted Value'].diff()
results.dropna(inplace=True)
results.columns = ['Positive Return', 'Signal', 'Entry/Exit']
signals_df = pd.concat([results, trading_signals_df], join='inner', axis=1)
return signals_df
def model_list():
return MODEL_LIST
def get_model(model_name):
if(model_name=='Random Forest Classifier - 1'):
return rf_model
if(model_name=='Random Forest Classifier - 2'):
return rf_model_2
return rf_model
def get_prediction(crypto, model_name, timeframe):
package = get_model(model_name)
model = package.load_model()
hist_data = crypto_stream.fetch_historical_data(crypto=crypto, interval=timeframe, limit=720)
print(f'total_data---{len(hist_data)}')
trading_signals_df = package.get_trading_singals(hist_data)
X_test, y_test = format_test_data(trading_signals_df, package)
results, acc_score = model_predict_test_data(model, X_test, y_test)
return trading_signals_df, results, acc_score
def format_test_data(trading_signals_df, package):
# Set x variable list of features
x_var_list = package.get_statergies()
# Filter by x-variable list
trading_signals_df[x_var_list].tail()
# Shift DataFrame values by 1
trading_signals_df[x_var_list] = trading_signals_df[x_var_list].shift(1)
# Drop NAs and replace positive/negative infinity values
trading_signals_df.dropna(subset=x_var_list, inplace=True)
trading_signals_df.dropna(subset=['daily_return'], inplace=True)
trading_signals_df = trading_signals_df.replace([np.inf, -np.inf], np.nan)
# Construct the dependent variable where if daily return is greater than 0, then 1, else, 0.
trading_signals_df['Positive Return'] = np.where(trading_signals_df['daily_return'] > 0, 1.0, 0.0)
# Construct the X test and y test datasets
X_test = trading_signals_df[x_var_list]
y_test = trading_signals_df['Positive Return']
return X_test, y_test
def model_predict_test_data(model, X_test, y_test):
# Make a prediction of "y" values from the X_test dataset
predictions = model.predict(X_test)
# Assemble actual y data (Y_test) with predicted y data (from just above) into two columns in a dataframe:
Results = y_test.to_frame()
Results["Predicted Value"] = predictions
# Calculating the accuracy score
acc_score = accuracy_score(y_test, predictions)
return Results, acc_score
def calculate_portfolio_metrics(signals_df, inital_capital, share_size):
# Set initial capital
initial_capital = float(inital_capital)
# Set the share size
#share_size = 10
# If predicted signals starts with sell, slice the dataset
signal_start = signals_df[signals_df['Entry/Exit'].isin([-1,1])]
if(signal_start.iloc[0]['Entry/Exit']==-1):
signals_df = signals_df.iloc[signal_start.iloc[[0]].index[0]<signals_df.index]
# Take a 500 share position where the dual moving average crossover is 1 (SMA50 is greater than SMA100)
signals_df['Position'] = share_size * signals_df['Signal']
# Find the points in time where a 500 share position is bought or sold
signals_df['Entry/Exit Position'] = signals_df['Entry/Exit'] * share_size
# Multiply share price by entry/exit positions and get the cumulatively sum
signals_df['Portfolio Holdings'] = signals_df['close'] * signals_df['Entry/Exit Position'].cumsum()
# Subtract the initial capital by the portfolio holdings to get the amount of liquid cash in the portfolio
signals_df['Portfolio Cash'] = initial_capital - (signals_df['close'] * signals_df['Entry/Exit Position']).cumsum()
# Get the total portfolio value by adding the cash amount by the portfolio holdings (or investments)
signals_df['Portfolio Total'] = signals_df['Portfolio Cash'] + signals_df['Portfolio Holdings']
# Calculate the portfolio daily returns
signals_df['Portfolio Daily Returns'] = signals_df['Portfolio Total'].pct_change()
# Calculate the cumulative returns
signals_df['Portfolio Cumulative Returns'] = (1 + signals_df['Portfolio Daily Returns']).cumprod() - 1
return signals_df
def calculate_trade_metrics(crypto, signals_df):
trade_evaluation_df = pd.DataFrame(
columns=[
'Stock',
'Entry Date',
'Exit Date',
'Shares',
'Entry Share Price',
'Exit Share Price',
'Entry Portfolio Holding',
'Exit Portfolio Holding',
'Profit/Loss'])
# Initialize iterative variables
entry_date = ''
exit_date = ''
entry_portfolio_holding = 0
exit_portfolio_holding = 0
share_size = 0
entry_share_price = 0
exit_share_price = 0
# Loop through signal DataFrame
# If `Entry/Exit` is 1, set entry trade metrics
# Else if `Entry/Exit` is -1, set exit trade metrics and calculate profit,
# Then append the record to the trade evaluation DataFrame
for index, row in signals_df.iterrows():
if row['Entry/Exit'] == 1:
entry_date = index
entry_portfolio_holding = abs(row['Portfolio Holdings'])
share_size = row['Entry/Exit Position']
entry_share_price = row['close']
elif row['Entry/Exit'] == -1:
exit_date = index
exit_portfolio_holding = abs(row['close'] * row['Entry/Exit Position'])
exit_share_price = row['close']
profit_loss = exit_portfolio_holding - entry_portfolio_holding
trade_evaluation_df = trade_evaluation_df.append(
{
'Stock': crypto,
'Entry Date': entry_date,
'Exit Date': exit_date,
'Shares': share_size,
'Entry Share Price': entry_share_price,
'Exit Share Price': exit_share_price,
'Entry Portfolio Holding': entry_portfolio_holding,
'Exit Portfolio Holding': exit_portfolio_holding,
'Profit/Loss': profit_loss
},
ignore_index=True)
print(trade_evaluation_df['Profit/Loss'].sum())
return trade_evaluation_df
def evaluate_portfolio_metrics(signals_df, trade_evaluation_df):
# Prepare DataFrame for metrics
metrics = [
'Annual Return',
'Cumulative Returns',
'Annual Volatility',
'Sharpe Ratio',
'Sortino Ratio',
'Total Profit/Loss',
'Test Dataset Size',
]
columns = ['Backtest']
# Initialize the DataFrame with index set to evaluation metrics and column as `Backtest` (just like PyFolio)
portfolio_evaluation_df = pd.DataFrame(index=metrics, columns=columns).rename_axis('Metrics')
portfolio_evaluation_df
# Calculate cumulative return
portfolio_evaluation_df.loc['Cumulative Returns'] = (signals_df['Portfolio Cumulative Returns'][-1])
# Calculate annualized return
portfolio_evaluation_df.loc['Annual Return'] = (
signals_df['Portfolio Daily Returns'].mean() * 252
)
# Calculate annual volatility
portfolio_evaluation_df.loc['Annual Volatility'] = (
signals_df['Portfolio Daily Returns'].std() * np.sqrt(252)
)
# Calculate Sharpe Ratio
portfolio_evaluation_df.loc['Sharpe Ratio'] = (
signals_df['Portfolio Daily Returns'].mean() * 252) / (
signals_df['Portfolio Daily Returns'].std() * np.sqrt(252)
)
# Calculate Downside Return
sortino_ratio_df = signals_df[['Portfolio Daily Returns']].copy()
sortino_ratio_df.loc[:,'Downside Returns'] = 0
target = 0
mask = sortino_ratio_df['Portfolio Daily Returns'] < target
sortino_ratio_df.loc[mask, 'Downside Returns'] = sortino_ratio_df['Portfolio Daily Returns']**2
portfolio_evaluation_df
# Calculate Sortino Ratio
down_stdev = np.sqrt(sortino_ratio_df['Downside Returns'].mean()) * np.sqrt(252)
expected_return = sortino_ratio_df['Portfolio Daily Returns'].mean() * 252
sortino_ratio = expected_return/down_stdev
portfolio_evaluation_df.loc['Sortino Ratio'] = sortino_ratio
portfolio_evaluation_df.loc['Total Profit/Loss'] = trade_evaluation_df['Profit/Loss'].sum()
portfolio_evaluation_df.loc['Test Dataset Size'] = signals_df.shape[0]
portfolio_evaluation_df
return portfolio_evaluation_df.round(2)