-
Notifications
You must be signed in to change notification settings - Fork 265
Open cylinder pull out
The problem considered is the static geometrically non-linear pull-out of an open cylinder with a load P = 40,000. The geometry of the cylinder is defined by: L= 10.35, R = 4.953 and h = 0.094, while the isotropic linear elastic material is characterized by E = 10.5E6 and ν = 0.3125.
SETUP IMAGE HERE
The key displacement is the vertical deformation u_z at the point of load application as illustrated in the figure above, with the reference equilibrium path according to [1] included in the results below.
The results of the test for the thin and thick triangle Kratos shell elements are presented below. TRI RESULTS
The results of the test for the thin and thick quadrilateral Kratos shell elements are presented below. QUAD RESULTS
Both graphs above indicate all Kratos triangular and quadrilateral shell elements agree with the reference solution.
- K.Y. Sze, X.H. Liu, and S.H. Lo. “Popular benchmark problems for geometric nonlinear analysis of shells”. In: Finite Elements in Analysis and Design 40.11 (2004), pp. 1551 –1569.
- Getting Kratos (Last compiled Release)
- Compiling Kratos
- Running an example from GiD
- Kratos input files and I/O
- Data management
- Solving strategies
- Manipulating solution values
- Multiphysics
- Video tutorials
- Style Guide
- Authorship of Kratos files
- Configure .gitignore
- How to configure clang-format
- How to use smart pointer in Kratos
- How to define adjoint elements and response functions
- Visibility and Exposure
- Namespaces and Static Classes
Kratos structure
Conventions
Solvers
Debugging, profiling and testing
- Compiling Kratos in debug mode
- Debugging Kratos using GDB
- Cross-debugging Kratos under Windows
- Debugging Kratos C++ under Windows
- Checking memory usage with Valgind
- Profiling Kratos with MAQAO
- Creating unitary tests
- Using ThreadSanitizer to detect OMP data race bugs
- Debugging Memory with ASAN
HOW TOs
- How to create applications
- Python Tutorials
- Kratos For Dummies (I)
- List of classes and variables accessible via python
- How to use Logger
- How to Create a New Application using cmake
- How to write a JSON configuration file
- How to Access DataBase
- How to use quaternions in Kratos
- How to do Mapping between nonmatching meshes
- How to use Clang-Tidy to automatically correct code
- How to use the Constitutive Law class
- How to use Serialization
- How to use GlobalPointerCommunicator
- How to use PointerMapCommunicator
- How to use the Geometry
- How to use processes for BCs
- How to use Parallel Utilities in futureproofing the code
- Porting to Pybind11 (LEGACY CODE)
- Porting to AMatrix
- How to use Cotire
- Applications: Python-modules
- How to run multiple cases using PyCOMPSs
- How to apply a function to a list of variables
- How to use Kratos Native sparse linear algebra
Utilities
Kratos API
Kratos Structural Mechanics API