forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ScalarOps.h
38 lines (34 loc) · 1.43 KB
/
ScalarOps.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#pragma once
#include <c10/core/Scalar.h>
#include <ATen/Tensor.h>
#include <ATen/Functions.h>
// This is in the c10 namespace because we use ADL to find the functions in it.
namespace c10 {
// FIXME: this should be (and was) Scalar::toTensor, but there is currently no way
// to implement this without going through Derived Types (which are not part of core).
inline at::Tensor scalar_to_tensor(Scalar s, const Device device = at::kCPU) {
// This is the fast track we have for CPU scalar tensors.
if (device == at::kCPU) {
if (s.isFloatingPoint()) {
return at::native::scalar_tensor(s, at::device(at::kCPU).dtype(at::kDouble));
} else if (s.isBoolean()) {
return at::native::scalar_tensor(s, at::device(at::kCPU).dtype(at::kBool));
} else if (s.isComplex()) {
return at::native::scalar_tensor(s, at::device(at::kCPU).dtype(at::kComplexDouble));
} else {
AT_ASSERT(s.isIntegral(false));
return at::native::scalar_tensor(s, at::device(at::kCPU).dtype(at::kLong));
}
}
if (s.isFloatingPoint()) {
return at::scalar_tensor(s, at::device(device).dtype(at::kDouble));
} else if (s.isBoolean()) {
return at::scalar_tensor(s, at::device(device).dtype(at::kBool));
} else if (s.isComplex()) {
return at::scalar_tensor(s, at::device(device).dtype(at::kComplexDouble));
} else {
AT_ASSERT(s.isIntegral(false));
return at::scalar_tensor(s, at::device(device).dtype(at::kLong));
}
}
}