-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_WACV.py
157 lines (121 loc) · 5.42 KB
/
generate_WACV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import json
import argparse
from pathlib import Path
from itertools import chain
from sconf import Config
from PIL import Image
import random
from os.path import join
import torch
from torchvision import transforms, utils
from model import Generator, Encoder
from base.dataset import sample
from base.utils import save_tensor_to_image, load_reference
import os, glob
SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
fonts_dir= os.path.join(SCRIPT_PATH, 'dataset_builder/val_fonts')
no_fonts = len(glob.glob(os.path.join(fonts_dir, '*.ttf')))
TRANSFORM = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
def infer_FM_GAN(args, device, mean_latent, size, gen, encoder, save_dir, source_path, source_ext, gen_chars, key_ref_dict, load_img, batch_size=1, return_img=False):
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
if source_ext == "ttf":
source = read_font(source_path)
gen_chars = get_filtered_chars(source) if gen_chars is None else gen_chars
def read_source(char):
return render(source, char)
else:
source = Path(source_path)
gen_chars = [p.stem for p in source.glob(f"*.{source_ext}")] if gen_chars is None else gen_chars
def read_source(char):
impath = source / f"{char}.png"
return Image.open(str(impath))
key_gen_dict = {k: gen_chars for k in key_ref_dict}
outs = {}
for key, gchars in key_gen_dict.items():
(save_dir / key).mkdir(parents=True, exist_ok=True)
ref_chars = key_ref_dict[key]
print(key)
print()
ref_imgs = torch.stack([TRANSFORM(load_img(key, c)) for c in ref_chars]).cuda(3)
ref_batches = torch.split(ref_imgs, batch_size)
cl_feats = []
for batch in ref_batches:
_cl = encoder(batch)
cl_feats.append(_cl)
cl_feats = torch.cat(cl_feats[-1]).mean(dim=0, keepdim=True)
for char in gchars:
source_img = TRANSFORM(read_source(char)).unsqueeze(0).cuda(3)
_co = encoder(source_img)
out = gen([_co[-1], cl_feats], inject_index=5, input_is_latent=True)[0].detach().cpu()
if return_img:
outs.setdefault(key, []).append(out)
path = save_dir / key / f"{char}.png"
# save_tensor_to_image(out, path)
# custom pytorch save
utils.save_image(
out,
path,
normalize=True,
range=(-1, 1),
)
return outs
def main():
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
print("Device chosen is ", device)
print()
parser = argparse.ArgumentParser()
parser.add_argument("--result_dir", help="path to save the result file")
parser.add_argument("--seed", type=int, default=1304, help="path to save the result file")
parser.add_argument("--size", type=int, default=128, help="output image size of the generator")
parser.add_argument("--sample", type=int, default=1, help="number of samples to be generated for each image")
parser.add_argument("--pics", type=int, default=30, help="number of images to be generated")
parser.add_argument("--truncation", type=float, default=1, help="truncation ratio")
parser.add_argument("--truncation_mean", type=int, default=4096, help="number of vectors to calculate mean for the truncation",)
parser.add_argument("--ckpt", type=str, default="checkpoint/310000.pt", help="path to the model checkpoint")
parser.add_argument("--channel_multiplier", type=int, default=1, help="channel multiplier of the generator. config-f = 2, else = 1")
parser.add_argument('--test_path', type=str, default='dataset', help="path to the test dataset")
parser.add_argument("--n_ref", type=int, default=1, help="number of reference characters to use")
args = parser.parse_args()
args.latent = 64
args.n_mlp = 8
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
encoder = Encoder(
args.size, args.latent, channel_multiplier=args.channel_multiplier
).to(device)
checkpoint = torch.load(args.ckpt)
g_ema.load_state_dict(checkpoint["g_ema"])
encoder.load_state_dict(checkpoint["enc"])
if args.truncation < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(args.truncation_mean)
else:
mean_latent = None
# generate(args, g_ema, encoder, device, mean_latent, args.test_path, args.size)
# args, left_argv = parser.parse_known_args()
# args, cfg, gen_model, infer_func, infer_args = setup_eval_config(args, left_argv)
# gen = load_model(args, cfg, gen_model)
random.seed(args.seed)
data_dir = join(args.test_path, "unseen_ref_imgs")
source_path = join(args.test_path, "unseen_src_imgs")
extension = "png"
source_ext="png"
ref_chars = "害树案排"
# ref_chars = None
key_ref_dict, load_img = load_reference(data_dir, extension, ref_chars)
infer_FM_GAN(args, device, mean_latent, args.size, gen=g_ema, encoder=encoder,
save_dir=args.result_dir,
source_path=source_path,
source_ext=source_ext,
gen_chars=None,
key_ref_dict=key_ref_dict,
load_img=load_img,
)
if __name__ == "__main__":
main()