-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch.sh
executable file
·49 lines (44 loc) · 1.63 KB
/
batch.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/bin/bash
# exit on ctrl+c
trap "exit" INT
model=alexnet
dataset=cifar10
weights=load
loss=contrastive
margin=1
epochs=5
dimensions=512
# Evaluate base CNNs (trained on ImageNet)
# for i in {1..3}; do
# for model in "alexnet" "efficientnet" "mobilenet" "resnet" "vgg16" "vit"; do
# for evalds in "mirflickr"; do # "mirflickr" "ukbench" "californiand" "copydays"
# sbatch --job-name "cnn-$model-$dataset" ./eval_cnn.sh -CM "$model" -ED "$evalds" -s "final$i"
# done
# done
# done
# Train Siamese on ND datasets
for i in {1..3}; do
for model in "alexnet" "efficientnet" "mobilenet" "resnet" "vgg16" "vit"; do
for dataset in "mirflickr"; do # "ukbench" "copydays" "holidays" "californiand" "mirflickr"
for loss in "contrastive" "semi-hard-triplet" "hard-triplet"; do
sbatch --job-name "sidd-$model-$dataset" ./eval_siamese.sh -CM $model -D $dataset -l $loss -m 1 1.5 2 -e 10 20 30 -s exp$i --save-vectors True
done
done
done
done
# Evaluate SiameseCNNs on ND datasets
# for i in {1..3}; do
# for model in "alexnet" "efficientnet" "mobilenet" "resnet" "vgg16" "vit"; do
# for dataset in "ukbench" "copydays" "holidays" "californiand" "mirflickr"; do
# for margin in "1"; do
# for loss in "semi-hard-triplet"; do
# for epochs in "10"; do
# for evalds in "ukbench", "copydays", "holidays", "californiand", "mirflickr"; do
# sbatch --job-name "sidd-eval-$model-$dataset" ./eval_siamese.sh -CM $model -D $dataset -m $margin -l $loss -e $epochs -s exp$i --save-vectors True
# done
# done
# done
# done
# done
# done
# done