-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.R
223 lines (176 loc) · 6.93 KB
/
evaluation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Obtain number of must-link or cannot-link pairs with shared cluster
countAssociations<-function(cluster.assigns, elements, info="", logging=FALSE)
{
if(logging)
clusteringLog(cluster.assigns, elements, info)
matching<-sapply(1:(length(elements)/4), function(e) {
left <- cluster.assigns$entity1.name==elements[e*4-3]
right <- cluster.assigns$entity2.name==elements[e*4-2]
selected1 <- left & right
left <- cluster.assigns$entity1.name==elements[e*4-1]
right <- cluster.assigns$entity2.name==elements[e*4]
selected2 <- left & right
c1<-cluster.assigns[selected1,3]
c2<-cluster.assigns[selected2,3]
if(c1==c2)
1
else
0
})
sum(matching)
}
# Calculate total of pairs correctly predicted in same cluster
#over total of pairs predicted in same cluster
getPrecision<-function(clustering, must.link, cannot.link, log)
{
MSC <- countAssociations(clustering, must.link, "Must-Link Pairs", log)
XSC <- countAssociations(clustering, cannot.link, "Cannot-Link Pairs", log)
PSC <- XSC+MSC
CSC <- MSC
CSC/PSC
}
# Calculate total of pairs correctly predicted in same cluster
#over total of pairs actually in same cluster
getRecall<-function(clustering, must.link, log)
{
MSC <- countAssociations(clustering, must.link, logging = FALSE)
ASC <- length(must.link)/2
CSC <- MSC
CSC/ASC
}
# Calculate F-measure
getF1<-function(precision, recall)
{
if(precision==0 | recall==0)
0
else
(2*precision*recall)/(precision+recall)
}
# Do evaluation and present traditional measures of information retrieval
evaluateClustering<-function(clusters, must.link, cannot.link, logging=FALSE)
{
p <- getPrecision(clusters, must.link, cannot.link, logging)
r <- getRecall(clusters, must.link, logging)
f <- getF1(p,r)
if(logging)
evaluationLog(c(p,r,f))
round(f,3)
}
# Represent scores with different cluster quantities to various distance measures
composeGraphic<-function(cluster.quantities, scores, distance.measures,
color.names=c("red","blue","orange","green","brown","gray"),
weight, algorithm, experience)
{
n1 <- length(distance.measures)
n2 <- length(color.names)
if(n1!=n2)
stop("Number of measures is different than number of available colors")
plot(1, main = paste("Clustering evaluation with", weight, "and", algorithm),
type = "n", bty='L', xlim = c(0, max(cluster.quantities)),
ylim = c(0, 100), xlab = "Number of Clusters", ylab = "F-score")
for(i in 1:length(color.names))
{
lines(cluster.quantities[i,], scores[i,], lty=1,
col = color.names[i], type = "b")
}
legend(0.1, 105, distance.measures, lty=1, cex=0.65, ncol = 3, bty="n",
col = color.names, title = "Distance measures")
#Exceptions to file name
if(weight=="TF/IDF")
weight<-"TFIDF"
if(algorithm=="Hartigan-Wong")
algorithm<-"HartiganAndWong"
plot.name <- paste(experience, weight, algorithm, sep = "-")
dev.copy(pdf, paste(plot.name, ".pdf", sep = ''))
invisible(dev.off())
}
# Try different clustering processes with a predefined unique number of clusters
initialEvaluation<-function(contextualized.pairs, measure="euclidean", percentage=0.1,
weights, kmeans.types, max.iterations=30, no.stopwords=TRUE,
labels.number=10, must.pairs, cannot.pairs, max.attempt=6,
evaluation.log=FALSE)
{
nw <- length(weights)
nk <- length(kmeans.types)
# Structure to support main data
f.scores <- matrix(0, nw, nk+1)
rownames(f.scores) <- weights
best.f1 <- 0
set <- ""
valid.occurrences <- matrix(max.attempt, nw, nk)
# Verify exact number of clusters
pairs.number<-nrow(contextualized.pairs)
n<-round(pairs.number*percentage)
cat("Quantity of desirable clusters:", n, "\n")
for(a in 1:max.attempt)
{
for(w in 1:nw)
{
for(k in 1:nk)
{
clustering <- defineClustering(contextualized.pairs, weight=weights[w], measure,
kmeans.args = list(algorithm=kmeans.types[k],
iter.max=max.iterations),
cluster.percentage = percentage,
remove.stopwords = no.stopwords,
words.number = labels.number)
current.score <- f.scores[w,k]
next.score <- evaluateClustering(clustering[,-4],
must.pairs, cannot.pairs, evaluation.log)
if(next.score==0)
valid.occurrences[w,k] <- valid.occurrences[w,k]-1
f.scores[w,k] <- current.score + next.score
if(current.score>best.f1)
{
best.f1<-current.score
analyzed.clustering <- clustering
set <- paste(weights[w],"-",kmeans.types[k])
}
}
}
}
#Get score averages
f.scores[,-(nk+1)] <- (f.scores[,-(nk+1)]/valid.occurrences)*100
f.scores[!is.finite(f.scores)]<-0
f.scores[,nk+1] <- apply(f.scores[,1:nk], 1, mean)
list("clusters" = analyzed.clustering, "scores" = f.scores, "parameters" = set)
}
# Different clustering processes with various predefined numbers of clusters
multipleEvaluation<-function(contextualized.pairs, measures, percentages, domain,
weighting, kmeans.type, max.iterations=30, no.stopwords=TRUE,
must.pairs, cannot.pairs, max.attempt=3, evaluation.log=FALSE)
{
nd <- length(measures)
nc <- length(percentages)
# Structures to support main data
cluster.numbers <- matrix(0, nd, nc)
f.scores <- matrix(0, nd, nc)
valid.occurrences <- matrix(max.attempt, nd, nc)
for(a in 1:max.attempt)
{
for(d in 1:nd)
{
for(c in 1:nc)
{
clustering <- defineClustering(contextualized.pairs, weight=weighting, measures[d],
kmeans.args = list(algorithm=kmeans.type,
iter.max = max.iterations),
cluster.percentage = percentages[c],
remove.stopwords = no.stopwords)
cluster.numbers[d,c] <- length(unique(clustering[clustering$cluster.key!=0,3]))
current.score <- f.scores[d,c]
next.score <- evaluateClustering(clustering[,-4],
must.pairs, cannot.pairs, evaluation.log)
if(next.score==0)
valid.occurrences[d,c] <- valid.occurrences[d,c]-1
f.scores[d,c] <- current.score + next.score
}
}
}
#Get score averages
f.scores <- (f.scores/valid.occurrences)*100
f.scores[!is.finite(f.scores)]<-0
#Get result representations
composeGraphic(cluster.numbers, f.scores, distance.measures = measures,
weight = weighting, algorithm = kmeans.type, experience = domain)
}