-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathecc.py
453 lines (369 loc) · 16.7 KB
/
ecc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# -*- coding: utf-8 -*-
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2018 The Electrum developers
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import base64
import hashlib
from typing import Union, Tuple
import ecdsa
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
from ecdsa.curves import SECP256k1
from ecdsa.ellipticcurve import Point
from ecdsa.util import string_to_number, number_to_string
from .util import bfh, bh2u, assert_bytes, to_bytes, InvalidPassword, profiler
from .crypto import (sha256d, aes_encrypt_with_iv, aes_decrypt_with_iv, hmac_oneshot)
from .ecc_fast import do_monkey_patching_of_python_ecdsa_internals_with_libsecp256k1
from . import msqr
from . import constants
from .logging import get_logger
_logger = get_logger(__name__)
do_monkey_patching_of_python_ecdsa_internals_with_libsecp256k1()
CURVE_ORDER = SECP256k1.order
def generator():
return ECPubkey.from_point(generator_secp256k1)
def point_at_infinity():
return ECPubkey(None)
def sig_string_from_der_sig(der_sig: bytes, order=CURVE_ORDER) -> bytes:
r, s = ecdsa.util.sigdecode_der(der_sig, order)
return ecdsa.util.sigencode_string(r, s, order)
def der_sig_from_sig_string(sig_string: bytes, order=CURVE_ORDER) -> bytes:
r, s = ecdsa.util.sigdecode_string(sig_string, order)
return ecdsa.util.sigencode_der_canonize(r, s, order)
def der_sig_from_r_and_s(r: int, s: int, order=CURVE_ORDER) -> bytes:
return ecdsa.util.sigencode_der_canonize(r, s, order)
def get_r_and_s_from_der_sig(der_sig: bytes, order=CURVE_ORDER) -> Tuple[int, int]:
r, s = ecdsa.util.sigdecode_der(der_sig, order)
return r, s
def get_r_and_s_from_sig_string(sig_string: bytes, order=CURVE_ORDER) -> Tuple[int, int]:
r, s = ecdsa.util.sigdecode_string(sig_string, order)
return r, s
def sig_string_from_r_and_s(r: int, s: int, order=CURVE_ORDER) -> bytes:
return ecdsa.util.sigencode_string_canonize(r, s, order)
def point_to_ser(P, compressed=True) -> bytes:
if isinstance(P, tuple):
assert len(P) == 2, 'unexpected point: %s' % P
x, y = P
else:
x, y = P.x(), P.y()
if x is None or y is None: # infinity
return None
if compressed:
return bfh(('%02x' % (2+(y&1))) + ('%064x' % x))
return bfh('04'+('%064x' % x)+('%064x' % y))
def get_y_coord_from_x(x: int, odd: bool=True) -> int:
curve = curve_secp256k1
_p = curve.p()
_a = curve.a()
_b = curve.b()
x = x % _p
y2 = (pow(x, 3, _p) + _a * x + _b) % _p
y = msqr.modular_sqrt(y2, _p)
if curve.contains_point(x, y):
if odd == bool(y & 1):
return y
return _p - y
raise InvalidECPointException()
def ser_to_point(ser: bytes) -> Tuple[int, int]:
if ser[0] not in (0x02, 0x03, 0x04):
raise ValueError('Unexpected first byte: {}'.format(ser[0]))
if ser[0] == 0x04:
return string_to_number(ser[1:33]), string_to_number(ser[33:])
x = string_to_number(ser[1:])
return x, get_y_coord_from_x(x, ser[0] == 0x03)
def _ser_to_python_ecdsa_point(ser: bytes) -> ecdsa.ellipticcurve.Point:
x, y = ser_to_point(ser)
try:
return Point(curve_secp256k1, x, y, CURVE_ORDER)
except:
raise InvalidECPointException()
class InvalidECPointException(Exception):
"""e.g. not on curve, or infinity"""
class _MyVerifyingKey(ecdsa.VerifyingKey):
@classmethod
def from_signature(klass, sig, recid, h, curve): # TODO use libsecp??
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
from ecdsa import util, numbertheory
from . import msqr
curveFp = curve.curve
G = curve.generator
order = G.order()
# extract r,s from signature
r, s = util.sigdecode_string(sig, order)
# 1.1
x = r + (recid//2) * order
# 1.3
alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p()
beta = msqr.modular_sqrt(alpha, curveFp.p())
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
# 1.4 the constructor checks that nR is at infinity
try:
R = Point(curveFp, x, y, order)
except:
raise InvalidECPointException()
# 1.5 compute e from message:
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r,order)
try:
Q = inv_r * ( s * R + minus_e * G )
except:
raise InvalidECPointException()
return klass.from_public_point( Q, curve )
class _MySigningKey(ecdsa.SigningKey):
"""Enforce low S values in signatures"""
def sign_number(self, number, entropy=None, k=None):
r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k)
if s > CURVE_ORDER//2:
s = CURVE_ORDER - s
return r, s
class _PubkeyForPointAtInfinity:
point = ecdsa.ellipticcurve.INFINITY
class ECPubkey(object):
def __init__(self, b: bytes):
if b is not None:
assert_bytes(b)
point = _ser_to_python_ecdsa_point(b)
self._pubkey = ecdsa.ecdsa.Public_key(generator_secp256k1, point)
else:
self._pubkey = _PubkeyForPointAtInfinity()
@classmethod
def from_sig_string(cls, sig_string: bytes, recid: int, msg_hash: bytes):
assert_bytes(sig_string)
if len(sig_string) != 64:
raise Exception('Wrong encoding')
if recid < 0 or recid > 3:
raise ValueError('recid is {}, but should be 0 <= recid <= 3'.format(recid))
ecdsa_verifying_key = _MyVerifyingKey.from_signature(sig_string, recid, msg_hash, curve=SECP256k1)
ecdsa_point = ecdsa_verifying_key.pubkey.point
return ECPubkey.from_point(ecdsa_point)
@classmethod
def from_signature65(cls, sig: bytes, msg_hash: bytes):
if len(sig) != 65:
raise Exception("Wrong encoding")
nV = sig[0]
if nV < 27 or nV >= 35:
raise Exception("Bad encoding")
if nV >= 31:
compressed = True
nV -= 4
else:
compressed = False
recid = nV - 27
return cls.from_sig_string(sig[1:], recid, msg_hash), compressed
@classmethod
def from_point(cls, point):
_bytes = point_to_ser(point, compressed=False) # faster than compressed
return ECPubkey(_bytes)
def get_public_key_bytes(self, compressed=True):
if self.is_at_infinity(): raise Exception('point is at infinity')
return point_to_ser(self.point(), compressed)
def get_public_key_hex(self, compressed=True):
return bh2u(self.get_public_key_bytes(compressed))
def point(self) -> Tuple[int, int]:
return self._pubkey.point.x(), self._pubkey.point.y()
def __repr__(self):
return f"<ECPubkey {self.get_public_key_hex()}>"
def __mul__(self, other: int):
if not isinstance(other, int):
raise TypeError('multiplication not defined for ECPubkey and {}'.format(type(other)))
ecdsa_point = self._pubkey.point * other
return self.from_point(ecdsa_point)
def __rmul__(self, other: int):
return self * other
def __add__(self, other):
if not isinstance(other, ECPubkey):
raise TypeError('addition not defined for ECPubkey and {}'.format(type(other)))
ecdsa_point = self._pubkey.point + other._pubkey.point
return self.from_point(ecdsa_point)
def __eq__(self, other):
return self._pubkey.point.x() == other._pubkey.point.x() \
and self._pubkey.point.y() == other._pubkey.point.y()
def __ne__(self, other):
return not (self == other)
def verify_message_for_address(self, sig65: bytes, message: bytes) -> None:
assert_bytes(message)
h = sha256d(msg_magic(message))
public_key, compressed = self.from_signature65(sig65, h)
# check public key
if public_key != self:
raise Exception("Bad signature")
# check message
self.verify_message_hash(sig65[1:], h)
def verify_message_hash(self, sig_string: bytes, msg_hash: bytes) -> None:
assert_bytes(sig_string)
if len(sig_string) != 64:
raise Exception('Wrong encoding')
ecdsa_point = self._pubkey.point
verifying_key = _MyVerifyingKey.from_public_point(ecdsa_point, curve=SECP256k1)
verifying_key.verify_digest(sig_string, msg_hash, sigdecode=ecdsa.util.sigdecode_string)
def encrypt_message(self, message: bytes, magic: bytes = b'BIE1') -> bytes:
"""
ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac
"""
assert_bytes(message)
randint = ecdsa.util.randrange(CURVE_ORDER)
ephemeral_exponent = number_to_string(randint, CURVE_ORDER)
ephemeral = ECPrivkey(ephemeral_exponent)
ecdh_key = (self * ephemeral.secret_scalar).get_public_key_bytes(compressed=True)
key = hashlib.sha512(ecdh_key).digest()
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
ciphertext = aes_encrypt_with_iv(key_e, iv, message)
ephemeral_pubkey = ephemeral.get_public_key_bytes(compressed=True)
encrypted = magic + ephemeral_pubkey + ciphertext
mac = hmac_oneshot(key_m, encrypted, hashlib.sha256)
return base64.b64encode(encrypted + mac)
@classmethod
def order(cls):
return CURVE_ORDER
def is_at_infinity(self):
return self == point_at_infinity()
@classmethod
def is_pubkey_bytes(cls, b: bytes):
try:
ECPubkey(b)
return True
except:
return False
def msg_magic(message: bytes) -> bytes:
from .bitcoin import var_int
length = bfh(var_int(len(message)))
return b"\x18BitCore Signed Message:\n" + length + message
def verify_message_with_address(address: str, sig65: bytes, message: bytes, *, net=None):
from .bitcoin import pubkey_to_address
assert_bytes(sig65, message)
if net is None: net = constants.net
try:
h = sha256d(msg_magic(message))
public_key, compressed = ECPubkey.from_signature65(sig65, h)
# check public key using the address
pubkey_hex = public_key.get_public_key_hex(compressed)
for txin_type in ['p2pkh','p2wpkh','p2wpkh-p2sh']:
addr = pubkey_to_address(txin_type, pubkey_hex, net=net)
if address == addr:
break
else:
raise Exception("Bad signature")
# check message
public_key.verify_message_hash(sig65[1:], h)
return True
except Exception as e:
_logger.info(f"Verification error: {repr(e)}")
return False
def is_secret_within_curve_range(secret: Union[int, bytes]) -> bool:
if isinstance(secret, bytes):
secret = string_to_number(secret)
return 0 < secret < CURVE_ORDER
class ECPrivkey(ECPubkey):
def __init__(self, privkey_bytes: bytes):
assert_bytes(privkey_bytes)
if len(privkey_bytes) != 32:
raise Exception('unexpected size for secret. should be 32 bytes, not {}'.format(len(privkey_bytes)))
secret = string_to_number(privkey_bytes)
if not is_secret_within_curve_range(secret):
raise InvalidECPointException('Invalid secret scalar (not within curve order)')
self.secret_scalar = secret
point = generator_secp256k1 * secret
super().__init__(point_to_ser(point))
self._privkey = ecdsa.ecdsa.Private_key(self._pubkey, secret)
@classmethod
def from_secret_scalar(cls, secret_scalar: int):
secret_bytes = number_to_string(secret_scalar, CURVE_ORDER)
return ECPrivkey(secret_bytes)
@classmethod
def from_arbitrary_size_secret(cls, privkey_bytes: bytes):
"""This method is only for legacy reasons. Do not introduce new code that uses it.
Unlike the default constructor, this method does not require len(privkey_bytes) == 32,
and the secret does not need to be within the curve order either.
"""
return ECPrivkey(cls.normalize_secret_bytes(privkey_bytes))
@classmethod
def normalize_secret_bytes(cls, privkey_bytes: bytes) -> bytes:
scalar = string_to_number(privkey_bytes) % CURVE_ORDER
if scalar == 0:
raise Exception('invalid EC private key scalar: zero')
privkey_32bytes = number_to_string(scalar, CURVE_ORDER)
return privkey_32bytes
def __repr__(self):
return f"<ECPrivkey {self.get_public_key_hex()}>"
def get_secret_bytes(self) -> bytes:
return number_to_string(self.secret_scalar, CURVE_ORDER)
def sign(self, data: bytes, sigencode=None, sigdecode=None) -> bytes:
if sigencode is None:
sigencode = sig_string_from_r_and_s
if sigdecode is None:
sigdecode = get_r_and_s_from_sig_string
private_key = _MySigningKey.from_secret_exponent(self.secret_scalar, curve=SECP256k1)
sig = private_key.sign_digest_deterministic(data, hashfunc=hashlib.sha256, sigencode=sigencode)
public_key = private_key.get_verifying_key()
if not public_key.verify_digest(sig, data, sigdecode=sigdecode):
raise Exception('Sanity check verifying our own signature failed.')
return sig
def sign_transaction(self, hashed_preimage: bytes) -> bytes:
return self.sign(hashed_preimage,
sigencode=der_sig_from_r_and_s,
sigdecode=get_r_and_s_from_der_sig)
def sign_message(self, message: bytes, is_compressed: bool) -> bytes:
def bruteforce_recid(sig_string):
for recid in range(4):
sig65 = construct_sig65(sig_string, recid, is_compressed)
try:
self.verify_message_for_address(sig65, message)
return sig65, recid
except Exception as e:
continue
else:
raise Exception("error: cannot sign message. no recid fits..")
message = to_bytes(message, 'utf8')
msg_hash = sha256d(msg_magic(message))
sig_string = self.sign(msg_hash,
sigencode=sig_string_from_r_and_s,
sigdecode=get_r_and_s_from_sig_string)
sig65, recid = bruteforce_recid(sig_string)
return sig65
def decrypt_message(self, encrypted: Tuple[str, bytes], magic: bytes=b'BIE1') -> bytes:
encrypted = base64.b64decode(encrypted)
if len(encrypted) < 85:
raise Exception('invalid ciphertext: length')
magic_found = encrypted[:4]
ephemeral_pubkey_bytes = encrypted[4:37]
ciphertext = encrypted[37:-32]
mac = encrypted[-32:]
if magic_found != magic:
raise Exception('invalid ciphertext: invalid magic bytes')
try:
ecdsa_point = _ser_to_python_ecdsa_point(ephemeral_pubkey_bytes)
except AssertionError as e:
raise Exception('invalid ciphertext: invalid ephemeral pubkey') from e
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ecdsa_point.x(), ecdsa_point.y()):
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
ephemeral_pubkey = ECPubkey.from_point(ecdsa_point)
ecdh_key = (ephemeral_pubkey * self.secret_scalar).get_public_key_bytes(compressed=True)
key = hashlib.sha512(ecdh_key).digest()
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
if mac != hmac_oneshot(key_m, encrypted[:-32], hashlib.sha256):
raise InvalidPassword()
return aes_decrypt_with_iv(key_e, iv, ciphertext)
def construct_sig65(sig_string: bytes, recid: int, is_compressed: bool) -> bytes:
comp = 4 if is_compressed else 0
return bytes([27 + recid + comp]) + sig_string