-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_fdp_laplace.py
172 lines (134 loc) · 6.91 KB
/
run_fdp_laplace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from cProfile import label
import warnings
warnings.simplefilter("ignore")
from model import load_model
from dataset import load_data
from utils import parse_args_fed_laplace
from lib.alibi import RandomizedLabelPrivacy, OHM
from lib.canary import fill_canaries
import numpy as np
import torch
import torch.nn as nn
from opacus import PrivacyEngine
from opacus.utils.batch_memory_manager import BatchMemoryManager
from tqdm import tqdm
from sklearn import metrics
import copy
import time
def aggregate_model_weights(master_model, worker_models, worker_weights, args):
worker_params = {worker_id: worker_model.state_dict() for worker_id, worker_model in enumerate(worker_models)}
new_params = copy.deepcopy(worker_params[0])
new_params = {name.replace('_module.',''): params for name,params in new_params.items()} # names
for name in new_params:
new_params[name] = torch.zeros(new_params[name].shape, device=args.DEVICE)
for worker_id, params in worker_params.items():
for name in new_params:
new_params[name] += params['_module.'+ name] * worker_weights[worker_id] # averaging
master_model.load_state_dict(new_params)
return master_model.state_dict()
def broadcast_model_weights(new_params, worker_models, args):
for worker in worker_models:
params = copy.deepcopy(new_params)
params = {'_module.'+ name: params for name,params in new_params.items()}
worker.load_state_dict(params)
def train(worker_id, model, criterion, train_loader, optimizer, epoch, privacy_engine, args):
model.train()
losses = []
top1_acc = []
with BatchMemoryManager(
data_loader=train_loader,
max_physical_batch_size=args.MAX_PHYSICAL_BATCH_SIZE,
optimizer=optimizer
) as memory_safe_data_loader:
for i, (images, target, label) in enumerate(memory_safe_data_loader):
optimizer.zero_grad()
images = images.to(args.DEVICE)
target = target.to(args.DEVICE)
label = label.to(args.DEVICE)
# compute output
output = model(images)
loss = criterion(output, target)
preds = np.argmax(output.detach().cpu().numpy(), axis=1)
labels = label.detach().cpu().numpy()
# measure accuracy and record loss
acc = metrics.accuracy_score(preds, labels)
losses.append(loss.item())
top1_acc.append(acc)
loss.backward()
optimizer.step()
if (i+1) % 200 == 0:
epsilon = privacy_engine.get_epsilon(args.DELTA)
print(
f'Worker: {worker_id} \t'
f"Train Epoch: {epoch} \t"
f"Loss: {np.mean(losses):.6f} "
f"Acc@1: {np.mean(top1_acc) * 100:.6f} "
f"(ε = {epsilon:.2f}, δ = {args.DELTA})"
)
def test(model, test_loader, args):
model.eval()
criterion = nn.CrossEntropyLoss()
losses = []
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
with torch.no_grad():
for images, target in test_loader:
images = images.to(args.DEVICE)
target = target.to(args.DEVICE)
output = model(images)
loss = criterion(output, target)
preds = np.argmax(output.detach().cpu().numpy(), axis=1)
predict_all = np.append(predict_all, preds)
labels = target.detach().cpu().numpy()
labels_all = np.append(labels_all, labels)
losses.append(loss.item())
acc = metrics.accuracy_score(predict_all, labels_all)
report = metrics.classification_report(labels_all, predict_all, target_names=args.LABEL_NAMES, digits=4)
confusion = metrics.confusion_matrix(labels_all, predict_all)
return acc, np.mean(losses), report, confusion
def main(args):
randomized_label_privacy = RandomizedLabelPrivacy(args.SIGMA, args.DELTA, args.MECHANISM, None if args.NOISE_ONLY_ONCE else args.DEVICE)
master_model = load_model(args.MODEL_NAME, args.NUM_CLASSES, args.DEVICE, args.USE_OPACUS)
train_loaders, test_loader, labelNames = load_data(args, randomized_label_privacy)
args.LABEL_NAMES = labelNames
worker_models, worker_dataloaders, worker_weights, worker_optimizers, worker_privacy_engines = [], [], [], [], []
for i in range(args.NUM_WORKERS):
worker_model = copy.deepcopy(master_model)
worker_model.to(args.DEVICE)
worker_dataloader, worker_weight = train_loaders[i]
worker_weights.append(worker_weight)
worker_optimizer = getattr(torch.optim, args.OPTIMIZER)(worker_model.parameters(), args.LR)
worker_privacy_engine = PrivacyEngine()
worker_model, worker_optimizer, worker_dataloader = worker_privacy_engine.make_private_with_epsilon(module=worker_model,
optimizer=worker_optimizer,
data_loader=worker_dataloader,
epochs=args.EPOCHS,
target_epsilon=args.EPSILON,
target_delta=args.DELTA,
max_grad_norm=args.MAX_GRAD_NORM)
worker_privacy_engines.append(worker_privacy_engine)
worker_models.append(worker_model)
worker_dataloaders.append(worker_dataloader)
worker_optimizers.append(worker_optimizer)
criterion = OHM(randomized_label_privacy, args.POST_PROCESS)
for round in range(args.ROUNDS):
print('='*20 + f"Round {round}" + '='*20)
for worker_id in range(args.NUM_WORKERS):
worker_model = worker_models[worker_id]
worker_optimizer = worker_optimizers[worker_id]
worker_privacy_engine = worker_privacy_engines[worker_id]
worker_dataloader = worker_dataloaders[worker_id]
for epoch in range(args.EPOCHS):
train(worker_id, worker_model, criterion, worker_dataloader, worker_optimizer, epoch, worker_privacy_engine, args)
new_params = aggregate_model_weights(master_model, worker_models, worker_weights, args)
broadcast_model_weights(new_params, worker_models, args)
test_acc, test_loss, test_report, test_confusion = test(master_model, test_loader, args)
print('Test Loss: {0:>5.2}, Test Acc: {1:>6.2%}'.format(test_loss, test_acc))
print("Precision, Recall and F1-Score...")
print(test_report)
print("Confusion Matrix...")
print(test_confusion)
print()
if __name__ == '__main__':
args = parse_args_fed_laplace()
main(args)