-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid.py
579 lines (484 loc) · 20.5 KB
/
grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# import matplotlib.pyplot as plt
import lkh
import math
import numpy as np
import tsplib95
import time
from scipy.spatial.distance import pdist
from scipy.spatial.distance import squareform
from multiprocessing import Pool
import pickle
import warnings
import torch
import os
warnings.filterwarnings("ignore")
time_parts = np.zeros(5)
def sample2tsplib(sample : np.ndarray, tsplib = False):
"""
sample(np.ndarray) : all nodes' coordinates in a instance, the shape is(n_nodes, 2)
return :
problem_str(str) :
"""
dimension = sample.shape[0] #nodes number
problem_str = f"""NAME : tsp
COMMENT : tsp_comm
TYPE : TSP
DIMENSION : {dimension}
EDGE_WEIGHT_TYPE : EUC_2D
NODE_COORD_SECTION"""
if tsplib == False:
for idx in range(dimension):
problem_str += "\n{} {} {}".format(idx + 1, sample[idx][0]*1000 , sample[idx][1]*1000 )
else:
for idx in range(dimension):
problem_str += "\n{} {} {}".format(idx + 1, sample[idx][0], sample[idx][1])
problem_str += "\nEOF\n"
return problem_str
def sampleWithLinks2tsplib(sample, in_region_idxs, links, tsplib = False):
"""
sample(np.ndarray) : all nodes' coordinates in a instance, the shape is(n_nodes, 2)
return :
problem_str(str) :
"""
dimension = len(in_region_idxs) #nodes number
idx_map = {}
for idx, i in enumerate(in_region_idxs):
idx_map[i] = idx
problem_str = f"""NAME : tsp
COMMENT : tsp_comm
TYPE : TSP
DIMENSION : {dimension}
EDGE_WEIGHT_TYPE : EUC_2D
NODE_COORD_SECTION"""
if tsplib == False:
for idx in range(len(in_region_idxs)):
problem_str += "\n{} {} {}".format(idx + 1, sample[in_region_idxs[idx]][0]*1000 , sample[in_region_idxs[idx]][1]*1000 )
else:
for idx in range(dimension):
problem_str += "\n{} {} {}".format(idx + 1, sample[in_region_idxs[idx]][0] , sample[in_region_idxs[idx]][1] )
# problem_str = f"""NAME : tsp
# COMMENT : tsp_comm
# TYPE : TSP
# DIMENSION : {dimension}
# EDGE_WEIGHT_TYPE: EXPLICIT
# EDGE_WEIGHT_FORMAT: FULL_MATRIX
# EDGE_WEIGHT_SECTION"""
# dist = []
# for i in range(len(in_region_idxs)):
# dist_list = []
# for j in range(len(in_region_idxs)):
# if i == j:
# dist_list.append('9999')
# else:
# dist_list.append(str(node_distance(sample[in_region_idxs[i]], sample[in_region_idxs[j]])*1000))
# dist.append(dist_list)
# for l in links:
# for i in range(len(in_region_idxs)):
# if i != l[1]:
# dist[idx_map[l[0]]][i] = "9999"
# dist[idx_map[l[0]]][idx_map[l[1]]] = "0"
# dist[idx_map[l[1]]][idx_map[l[0]]] = "0"
# for d in dist:
# dist_str = " ".join(d)
# problem_str += f'\n {dist_str}'
if len(links) > 0:
problem_str += "\nFIXED_EDGES_SECTION"
for l in links:
if l[0] in idx_map and l[1] in idx_map:
problem_str += f'\n{str(idx_map[l[0]] + 1)} {str(idx_map[l[1]] + 1)}'
problem_str += f'\n-1'
problem_str += "\nEOF\n"
return problem_str
def node_distance(left, right):
return math.sqrt((left[0]-right[0])**2 + (left[1]-right[1])**2)
def cal_route_distance(pos, route):
dist = 0
for i in range(len(route) - 1):
dist += node_distance(pos[route[i]], pos[route[i + 1]])
return dist
def cal_route_distance_matrix(matrix, route):
dist = 0
for i in range(len(route) - 1):
dist += matrix[route[i]][route[i + 1]]
return dist
def lkh_solver(sample, runs = 1):
problem = tsplib95.parse(sample2tsplib(sample))
# routes = lkh.solve('/root/autodl-tmp/zsp/lcp/VSR-LKH', problem = problem, max_trials = sample.shape[0], runs = runs)
routes = lkh.solve('LKH-3.0.7/LKH', problem = problem, max_trials = sample.shape[0], runs = 10)
route = [r - 1 for r in routes[0]] # to index-0
route.append(0)
#calculate distance
dist = cal_route_distance(sample, route)
return route, dist
def plot_tour(pos, tour, len_idx):
x = pos[:, 0]
y = pos[:, 1]
plt.scatter(x, y, s = 5)
for i in range(len(tour) - 1):
plt.arrow(x[tour[i]],
y[tour[i]],
x[tour[i + 1]] - x[tour[i]],
y[tour[i + 1]] - y[tour[i]],
length_includes_head=True,
head_width=0.005,
linewidth=0.5)
plt.savefig('visualization'+ str(len_idx) +'.jpg', dpi=1000)
def extract_sample(sample, region, mask):
in_region_idxs, out_region_idxs = [],[] # index of exterior region and interior region in sample
lbx, lby = region[0] # coordinate of left-bottom
rtx, rty = region[1] # coordinate of right-up
for idx in range(sample.shape[0]):
if idx in mask:
continue
x, y = sample[idx]
if lbx <= x <= rtx and lby <= y <= rty:
in_region_idxs.append(idx)
else:
out_region_idxs.append(idx)
return in_region_idxs, out_region_idxs
def split_tour(sample, tour, region):
subtour, cur_tour = [], []
lbx, lby = region[0]
rtx, rty = region[1]
for idx in tour:
x,y = sample[idx]
if lbx <= x <= rtx and lby <= y <= rty:
cur_tour.append(idx)
elif 0 < len(cur_tour) <=2:
cur_tour = []
elif len(cur_tour) > 2:
subtour.append(cur_tour)
cur_tour = []
return subtour
def remove_mid_nodes(route_list, mask, links):
"""Only the two endpoints of the route within the interior region are retained.
These two endpoints are added to the links while the intermediate nodes are masked.
Args:
- route_list(list):
- mask(set):
- links(list):
Returns:
- mask(set):
- new_links(list):
"""
save_links = set(range(len(links))) # indices of kept link
ept2idx = {} # The mapping from the endpoints of the link to the index
for idx, l in enumerate(links): # create ept2idx
ept2idx[l[0]] = idx
ept2idx[l[1]] = idx
new_links = []
for sub_route in route_list:
for idx in range(len(sub_route)):
if idx != 0 and idx != len(sub_route) - 1: # the intermediate nodes are masked.
mask.add(sub_route[idx])
if sub_route[idx] in ept2idx and ept2idx[sub_route[idx]] in save_links: #delete duplicate links
save_links.remove(ept2idx[sub_route[idx]])
new_links.append([sub_route[0], sub_route[-1]])
save_links = [links[i] for i in save_links]
new_links.extend(save_links)
return mask, new_links
def lkh_solver_by_region(sample, links, mask, region_exterior, region_interior, runs = 1):
"""
args:
- region_exterior list[list] : [[bottom_left_x, bottom_left_y], [top_right_x, top_right_y]]
"""
# extract subsample in region_exterior according to mask
time_0 = time.time()
in_region_idxs, out_region_idxs = extract_sample(sample, region_exterior, mask)
tmp_in, tmp_out = extract_sample(sample, region_interior, mask)
# solve sample in region_exterior, [n1, n2] in links denotes that (n1, n2) must in route
time_1 = time.time()
# problem = tsplib95.parse(sample2tsplib(sample[in_region_idxs]))
problem = tsplib95.parse(sampleWithLinks2tsplib(sample, in_region_idxs, links))
# print("samples:", len(in_region_idxs))
time_2 = time.time()
if len(in_region_idxs) < 3:
return [], [], set(), []
routes = lkh.solve('./LKH-3.0.7/LKH', problem = problem, max_trials = len(in_region_idxs), runs = 10)
route = [in_region_idxs[r - 1] for r in routes[0]] # to index-0
route.append(in_region_idxs[0]) # make recycle
time_3 = time.time()
# split route in region_interior
route_list = split_tour(sample, route, region_interior)
time_4 = time.time()
# remove mid nodes in subroute
mask, links = remove_mid_nodes(route_list, mask, links)
time_5 = time.time()
# print(time_1 - time_0, time_2 - time_1, time_3 - time_2, time_4 - time_3, time_5 - time_4)
global time_parts
time_parts += np.array([time_1 - time_0, time_2 - time_1, time_3 - time_2, time_4 - time_3, time_5 - time_4])
return route, links, mask, route_list
def our_solver_parallel(sample, layer_number, return_solution = False, runs = 10):
# dist_matrix = squareform(pdist(sample, metric='euclidean'))
# route_matrix = np.zeros((sample.shape[0], sample.shape[0]), dtype = "bool")
route_matrix = [[] for _ in range(sample.shape[0])]
x_min = sample[:, 0].min()
x_max = sample[:, 0].max()
y_min = sample[:, 1].min()
y_max = sample[:, 1].max()
# create region list
gap = 1 / (2**(layer_number + 2))
all_region_interior, all_region_exterior = [], []
for layer_idx in reversed(range(layer_number)):
region_interior = []
region_exterior = []
regions_number = 2**layer_idx
interval = 1 / (2**layer_idx)
for i in range(regions_number):
for j in range(regions_number):
region_interior.append([[i * interval * (x_max - x_min) + gap * (x_max - x_min) + x_min,
j * interval * (y_max -y_min) + gap * (y_max - y_min) + y_min],
[(i + 1) * interval * (x_max - x_min) - gap * (x_max - x_min) + x_min,
(j + 1) * interval * (y_max -y_min) - gap * (y_max -y_min) + y_min]])
region_exterior.append([[i * interval * (x_max - x_min) + x_min,
j * interval * (y_max -y_min) + y_min],
[(i + 1) * interval * (x_max - x_min) + x_min,
(j + 1) * interval * (y_max -y_min) + y_min]])
# print(region_exterior)
all_region_interior.append(region_interior)
all_region_exterior.append(region_exterior)
route_all, links = [],[]
mask = set()
for layer_idx in range(layer_number):
t= time.time()
pool = Pool(processes = 8)
results = []
for idx in range(len(all_region_interior[layer_idx])):
region_exterior = all_region_exterior[layer_idx][idx]
region_interior = all_region_interior[layer_idx][idx]
# print(idx, region_exterior, region_interior)
results.append(pool.apply_async(lkh_solver_by_region, (sample, links, mask, region_exterior, region_interior, runs)))
pool.close()
pool.join()
for res in results:
route, links_cur, mask_cur, route_list = res.get()
links.extend(links_cur)
mask.update(mask_cur)
if layer_idx != layer_number - 1: # not need last route list
route_all.extend(route_list)
# for r in route_list:
# dist_matrix[r[0]][r[-1]] = cal_route_distance_matrix(dist_matrix, r)
# dist_matrix[r[-1]][r[0]] = cal_route_distance_matrix(dist_matrix, r)
# ours_cost = cal_route_distance_matrix(dist_matrix, route)
if return_solution:
for i in range(len(route) - 1):
# route_matrix[route[i]][route[i + 1]] = True
# route_matrix[route[i + 1]][route[i]] = True
route_matrix[route[i]].append(route[i + 1])
route_matrix[route[i + 1]].append(route[i])
for r in route_all[::-1]:
# route_matrix[r[0]][r[-1]] = False
# route_matrix[r[-1]][r[0]] = False
route_matrix[r[0]].remove(r[-1])
route_matrix[r[-1]].remove(r[0])
for i in range(len(r) - 1):
# route_matrix[r[i]][r[i + 1]] = True
# route_matrix[r[i + 1]][r[i]] = True
route_matrix[r[i]].append(r[i + 1])
route_matrix[r[i + 1]].append(r[i])
final_route = [0]
# net = np.where(route_matrix[0] == True)[0][0]
net = route_matrix[0][0]
final_route.append(net)
for i in range(sample.shape[0]-2):
# nxt = np.where(route_matrix[final_route[-1]] == True)[0]
nxt = route_matrix[final_route[-1]]
for n in nxt:
if n!=final_route[-2]:
final_route.append(n)
break
final_route.append(0)
# check solution
for i in range(sample.shape[0]):
if not i in final_route:
print("invaild solution")
exit()
assert len(final_route) == sample.shape[0] + 1, "invaild solution"
ours_cost = cal_route_distance(sample, final_route)
if return_solution:
return final_route, ours_cost
else:
return ours_cost
def our_solver(sample, return_solution = False):
# dist_matrix = squareform(pdist(sample, metric='euclidean'))
route_matrix = np.zeros((sample.shape[0], sample.shape[0]), dtype = "bool")
# create region list
interval_interior, interval_exterior = 0.1, 0.1
all_region_interior, all_region_exterior = [], []
num_iter = math.ceil((0.5 - interval_exterior) / interval_interior)
cur_interior = 0.5
for i in range(num_iter):
cur_interior = max(cur_interior - interval_interior, 0)
cur_exterior = cur_interior - interval_exterior
all_region_interior.append([[cur_interior, cur_interior], [1 - cur_interior, 1 - cur_interior]])
all_region_exterior.append([[cur_exterior, cur_exterior], [1 - cur_exterior, 1 - cur_exterior]])
route_all, links = [],[]
mask = set()
for idx in range(len(all_region_interior)):
region_exterior = all_region_exterior[idx]
region_interior = all_region_interior[idx]
route, links, mask, route_list = lkh_solver_by_region(sample, links, mask, region_exterior, region_interior, runs = 10)
if idx != len(all_region_interior) - 1: # not need last route list
route_all.extend(route_list)
# for r in route_list:
# dist_matrix[r[0]][r[-1]] = cal_route_distance_matrix(dist_matrix, r)
# dist_matrix[r[-1]][r[0]] = cal_route_distance_matrix(dist_matrix, r)
# ours_cost = cal_route_distance_matrix(dist_matrix, route)
if return_solution:
for i in range(len(route) - 1):
route_matrix[route[i]][route[i + 1]] = True
route_matrix[route[i + 1]][route[i]] = True
for r in route_all[::-1]:
route_matrix[r[0]][r[-1]] = False
route_matrix[r[-1]][r[0]] = False
for i in range(len(r) - 1):
route_matrix[r[i]][r[i + 1]] = True
route_matrix[r[i + 1]][r[i]] = True
final_route = [0]
net = np.where(route_matrix[0] == True)[0][0]
final_route.append(net)
for i in range(sample.shape[0]-2):
nxt = np.where(route_matrix[final_route[-1]] == True)[0]
for n in nxt:
if n!=final_route[-2]:
final_route.append(n)
break
final_route.append(0)
# check solution
# 1. Each vertex must be visited
for i in range(sample.shape[0]):
if not i in final_route:
print("invaild solution")
exit()
# 2. Visit each vertex once
if (sample.shape[0] != len(final_route) - 1):
print("invaild solution")
exit()
ours_cost = cal_route_distance(sample, final_route)
if return_solution:
return final_route, ours_cost
else:
return ours_cost
def load_data(filepath):
assert os.path.exists(filepath), print('Error: filepath {} not exist!'.format(filepath))
load_file = open(filepath, 'rb')
load_data = pickle.load(load_file)
load_file.close()
return load_data
def load_instance(filename, scale=True):
problem = tsplib95.load(filename)
node_indices = list(problem.get_nodes())
data = [problem.node_coords[node_idx] for node_idx in node_indices]
data = torch.tensor(data).double()
# if scale:
# d_min = data.min(dim=0)[0]
# factor = max(data.max(dim=0)[0] - d_min)
# data = data - d_min
return data
def readDataFile(filePath):
"""
read datafile
"""
res = []
sols = []
with open(filePath, "r") as fp:
datas = fp.readlines()
for data in datas:
tmp = data.split("output")
data = [float(i) for i in tmp[0].split()]
loc_x = np.array(data[::2])
loc_y = np.array(data[1::2])
data = np.stack([loc_x, loc_y], axis = 1)
res.append(data)
if len(tmp) > 1:
sol = [int(i) - 1 for i in tmp[1].split()]
sols.append(sol)
res = np.stack(res, axis = 0)
return res, sols
def readTSPLib(filePath):
"""
read TSPLib
"""
data_trans, data_raw = [], []
with open(filePath, "r") as fp:
loc_x = []
loc_y = []
datas = fp.readlines()
for data in datas:
if ":" in data or "EOF" in data or "NODE_COORD_SECTION" in data:
continue
data = [float(i) for i in data.split()]
if len(data) == 3:
loc_x.append(data[1])
loc_y.append(data[2])
loc_x = np.array(loc_x)
loc_y = np.array(loc_y)
data = np.stack([loc_x, loc_y], axis=1)
data_raw.append(data)
mx = loc_x.max() - loc_x.min()
my = loc_y.max() - loc_y.min()
data = np.stack([loc_x - loc_x.min(), loc_y - loc_y.min()], axis = 1)
data = data / max(mx, my)
data_trans.append(data)
data_trans = np.stack(data_trans, axis = 0)
data_raw = np.stack(data_raw, axis = 0)
return data_trans, data_raw
def initialSolFile(ours_solution):
with open('initialSol.txt', 'w') as f:
f.write('TOUR_SECTION :' + '\n')
for i in ours_solution:
f.write(str(i) + '\n')
f.write('-1') # 写入结束符号
def segment_revise(sample, ours_solution, seg_len, runs = 10):
seg_num = sample.shape[0] // seg_len
if (sample.shape[0] % seg_len != 0):
seg_num += 1
routes = []
for i in range(seg_num):
links = []
if (i == seg_num - 1):
seg_initial_sol = ours_solution[i * seg_len: ]
else:
seg_initial_sol = ours_solution[i * seg_len: (i + 1) * seg_len]
links.append([seg_initial_sol[0], seg_initial_sol[-1]])
problem = tsplib95.parse(sampleWithLinks2tsplib(sample, seg_initial_sol, links))
initialSolFile(range(0, len(seg_initial_sol)))
seg_routes = lkh.solve('./LKH-3.0.7/LKH', problem = problem, max_trials = len(seg_initial_sol), initial_tour_file = 'initialSol.txt', runs = 200)
seg_routes = [seg_initial_sol[r - 1] for r in seg_routes[0]] # to index-0
routes += seg_routes
assert seg_routes[0] == seg_initial_sol[0] and seg_routes[-1] == seg_initial_sol[-1], "invaild segment"
routes.append(routes[0]) # make a cycle
# check solution
for i in range(sample.shape[0]):
if not i in routes:
print("invaild solution")
exit()
assert len(routes) == sample.shape[0] + 1, "invaild solution"
ours_cost = cal_route_distance(sample, routes)
return routes, ours_cost
def first_step(samples, lkh_layer_number, solutions, val_size):
samples_raw = samples
all_concorde_cost = []
all_lkh_cost, all_lkh_time = [],[]
all_ours_cost, all_ours_time = [],[]
samples_solution = []
print("*"*30)
for idx in range(val_size):
# print("solve sample :{}".format(idx + 1))
sample = samples[idx]
sample_raw = samples_raw[idx]
# ours
time_start = time.time()
ours_solution, ours_cost = our_solver_parallel(sample, lkh_layer_number,return_solution = True, runs = 10)
samples_solution.append(np.array(ours_solution[:-1]))
ours_cost = cal_route_distance(sample_raw, ours_solution)
time_end = time.time()
ours_time = time_end - time_start
all_ours_cost.append(ours_cost)
all_ours_time.append(ours_time)
print("solve sample :{}, {:<15}:{:.5f}, total time:{:.5f}".format(idx + 1, "ours cost", ours_cost, ours_time))
return samples_solution
# if (not solutions is None) and len(solutions) > 0:
# print("Concorde average cost:{:.3f}".format(sum(all_concorde_cost)/len(all_concorde_cost)))
# print("LKH3 average cost:{:.3f}, total time:{:3f}".format(sum(all_lkh_cost)/len(all_lkh_cost), sum(all_lkh_time)))
print("Ours average cost:{:.3f}, total time:{:3f}".format(sum(all_ours_cost)/len(all_ours_cost), sum(all_ours_time)))