|
| 1 | +import os |
1 | 2 | import pickle
|
2 | 3 |
|
3 | 4 | import numpy as np
|
4 | 5 | import torch
|
5 | 6 |
|
6 | 7 | from pytorch_lightning import Trainer
|
7 | 8 | from pytorch_lightning.testing import LightningTestModel
|
| 9 | +from pytorch_lightning.logging import LightningLoggerBase, rank_zero_only |
8 | 10 | from . import testing_utils
|
9 | 11 |
|
10 | 12 | RANDOM_FILE_PATHS = list(np.random.randint(12000, 19000, 1000))
|
@@ -69,117 +71,119 @@ def test_testtube_pickle():
|
69 | 71 | testing_utils.clear_save_dir()
|
70 | 72 |
|
71 | 73 |
|
72 |
| -# def test_mlflow_logger(): |
73 |
| -# """ |
74 |
| -# verify that basic functionality of mlflow logger works |
75 |
| -# """ |
76 |
| -# reset_seed() |
77 |
| -# |
78 |
| -# try: |
79 |
| -# from pytorch_lightning.logging import MLFlowLogger |
80 |
| -# except ModuleNotFoundError: |
81 |
| -# return |
82 |
| -# |
83 |
| -# hparams = get_hparams() |
84 |
| -# model = LightningTestModel(hparams) |
85 |
| -# |
86 |
| -# root_dir = os.path.dirname(os.path.realpath(__file__)) |
87 |
| -# mlflow_dir = os.path.join(root_dir, "mlruns") |
88 |
| -# import pdb |
89 |
| -# pdb.set_trace() |
90 |
| -# |
91 |
| -# logger = MLFlowLogger("test", f"file://{mlflow_dir}") |
92 |
| -# logger.log_hyperparams(hparams) |
93 |
| -# logger.save() |
94 |
| -# |
95 |
| -# trainer_options = dict( |
96 |
| -# max_nb_epochs=1, |
97 |
| -# train_percent_check=0.01, |
98 |
| -# logger=logger |
99 |
| -# ) |
100 |
| -# |
101 |
| -# trainer = Trainer(**trainer_options) |
102 |
| -# result = trainer.fit(model) |
103 |
| -# |
104 |
| -# print('result finished') |
105 |
| -# assert result == 1, "Training failed" |
106 |
| -# |
107 |
| -# shutil.move(mlflow_dir, mlflow_dir + f'_{n}') |
108 |
| - |
109 |
| - |
110 |
| -# def test_mlflow_pickle(): |
111 |
| -# """ |
112 |
| -# verify that pickling trainer with mlflow logger works |
113 |
| -# """ |
114 |
| -# reset_seed() |
115 |
| -# |
116 |
| -# try: |
117 |
| -# from pytorch_lightning.logging import MLFlowLogger |
118 |
| -# except ModuleNotFoundError: |
119 |
| -# return |
120 |
| -# |
121 |
| -# hparams = get_hparams() |
122 |
| -# model = LightningTestModel(hparams) |
123 |
| -# |
124 |
| -# root_dir = os.path.dirname(os.path.realpath(__file__)) |
125 |
| -# mlflow_dir = os.path.join(root_dir, "mlruns") |
126 |
| -# |
127 |
| -# logger = MLFlowLogger("test", f"file://{mlflow_dir}") |
128 |
| -# logger.log_hyperparams(hparams) |
129 |
| -# logger.save() |
130 |
| -# |
131 |
| -# trainer_options = dict( |
132 |
| -# max_nb_epochs=1, |
133 |
| -# logger=logger |
134 |
| -# ) |
135 |
| -# |
136 |
| -# trainer = Trainer(**trainer_options) |
137 |
| -# pkl_bytes = pickle.dumps(trainer) |
138 |
| -# trainer2 = pickle.loads(pkl_bytes) |
139 |
| -# trainer2.logger.log_metrics({"acc": 1.0}) |
140 |
| -# |
141 |
| -# n = RANDOM_FILE_PATHS.pop() |
142 |
| -# shutil.move(mlflow_dir, mlflow_dir + f'_{n}') |
143 |
| - |
144 |
| - |
145 |
| -# def test_custom_logger(): |
146 |
| -# |
147 |
| -# class CustomLogger(LightningLoggerBase): |
148 |
| -# def __init__(self): |
149 |
| -# super().__init__() |
150 |
| -# self.hparams_logged = None |
151 |
| -# self.metrics_logged = None |
152 |
| -# self.finalized = False |
153 |
| -# |
154 |
| -# @rank_zero_only |
155 |
| -# def log_hyperparams(self, params): |
156 |
| -# self.hparams_logged = params |
157 |
| -# |
158 |
| -# @rank_zero_only |
159 |
| -# def log_metrics(self, metrics, step_num): |
160 |
| -# self.metrics_logged = metrics |
161 |
| -# |
162 |
| -# @rank_zero_only |
163 |
| -# def finalize(self, status): |
164 |
| -# self.finalized_status = status |
165 |
| -# |
166 |
| -# hparams = get_hparams() |
167 |
| -# model = LightningTestModel(hparams) |
168 |
| -# |
169 |
| -# logger = CustomLogger() |
170 |
| -# |
171 |
| -# trainer_options = dict( |
172 |
| -# max_nb_epochs=1, |
173 |
| -# train_percent_check=0.01, |
174 |
| -# logger=logger |
175 |
| -# ) |
176 |
| -# |
177 |
| -# trainer = Trainer(**trainer_options) |
178 |
| -# result = trainer.fit(model) |
179 |
| -# assert result == 1, "Training failed" |
180 |
| -# assert logger.hparams_logged == hparams |
181 |
| -# assert logger.metrics_logged != {} |
182 |
| -# assert logger.finalized_status == "success" |
| 74 | +def test_mlflow_logger(): |
| 75 | + """ |
| 76 | + verify that basic functionality of mlflow logger works |
| 77 | + """ |
| 78 | + reset_seed() |
| 79 | + |
| 80 | + try: |
| 81 | + from pytorch_lightning.logging import MLFlowLogger |
| 82 | + except ModuleNotFoundError: |
| 83 | + return |
| 84 | + |
| 85 | + hparams = testing_utils.get_hparams() |
| 86 | + model = LightningTestModel(hparams) |
| 87 | + |
| 88 | + root_dir = os.path.dirname(os.path.realpath(__file__)) |
| 89 | + mlflow_dir = os.path.join(root_dir, "mlruns") |
| 90 | + |
| 91 | + logger = MLFlowLogger("test", f"file://{mlflow_dir}") |
| 92 | + |
| 93 | + trainer_options = dict( |
| 94 | + max_nb_epochs=1, |
| 95 | + train_percent_check=0.01, |
| 96 | + logger=logger |
| 97 | + ) |
| 98 | + |
| 99 | + trainer = Trainer(**trainer_options) |
| 100 | + result = trainer.fit(model) |
| 101 | + |
| 102 | + print('result finished') |
| 103 | + assert result == 1, "Training failed" |
| 104 | + |
| 105 | + testing_utils.clear_save_dir() |
| 106 | + |
| 107 | + |
| 108 | +def test_mlflow_pickle(): |
| 109 | + """ |
| 110 | + verify that pickling trainer with mlflow logger works |
| 111 | + """ |
| 112 | + reset_seed() |
| 113 | + |
| 114 | + try: |
| 115 | + from pytorch_lightning.logging import MLFlowLogger |
| 116 | + except ModuleNotFoundError: |
| 117 | + return |
| 118 | + |
| 119 | + hparams = testing_utils.get_hparams() |
| 120 | + model = LightningTestModel(hparams) |
| 121 | + |
| 122 | + root_dir = os.path.dirname(os.path.realpath(__file__)) |
| 123 | + mlflow_dir = os.path.join(root_dir, "mlruns") |
| 124 | + |
| 125 | + logger = MLFlowLogger("test", f"file://{mlflow_dir}") |
| 126 | + |
| 127 | + trainer_options = dict( |
| 128 | + max_nb_epochs=1, |
| 129 | + logger=logger |
| 130 | + ) |
| 131 | + |
| 132 | + trainer = Trainer(**trainer_options) |
| 133 | + pkl_bytes = pickle.dumps(trainer) |
| 134 | + trainer2 = pickle.loads(pkl_bytes) |
| 135 | + trainer2.logger.log_metrics({"acc": 1.0}) |
| 136 | + |
| 137 | + testing_utils.clear_save_dir() |
| 138 | + |
| 139 | + |
| 140 | +def test_custom_logger(tmpdir): |
| 141 | + |
| 142 | + class CustomLogger(LightningLoggerBase): |
| 143 | + def __init__(self): |
| 144 | + super().__init__() |
| 145 | + self.hparams_logged = None |
| 146 | + self.metrics_logged = None |
| 147 | + self.finalized = False |
| 148 | + |
| 149 | + @rank_zero_only |
| 150 | + def log_hyperparams(self, params): |
| 151 | + self.hparams_logged = params |
| 152 | + |
| 153 | + @rank_zero_only |
| 154 | + def log_metrics(self, metrics, step_num): |
| 155 | + self.metrics_logged = metrics |
| 156 | + |
| 157 | + @rank_zero_only |
| 158 | + def finalize(self, status): |
| 159 | + self.finalized_status = status |
| 160 | + |
| 161 | + @property |
| 162 | + def name(self): |
| 163 | + return "name" |
| 164 | + |
| 165 | + @property |
| 166 | + def version(self): |
| 167 | + return "1" |
| 168 | + |
| 169 | + hparams = testing_utils.get_hparams() |
| 170 | + model = LightningTestModel(hparams) |
| 171 | + |
| 172 | + logger = CustomLogger() |
| 173 | + |
| 174 | + trainer_options = dict( |
| 175 | + max_nb_epochs=1, |
| 176 | + train_percent_check=0.01, |
| 177 | + logger=logger, |
| 178 | + default_save_path=tmpdir |
| 179 | + ) |
| 180 | + |
| 181 | + trainer = Trainer(**trainer_options) |
| 182 | + result = trainer.fit(model) |
| 183 | + assert result == 1, "Training failed" |
| 184 | + assert logger.hparams_logged == hparams |
| 185 | + assert logger.metrics_logged != {} |
| 186 | + assert logger.finalized_status == "success" |
183 | 187 |
|
184 | 188 |
|
185 | 189 | def reset_seed():
|
|
0 commit comments