-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_processing.py
68 lines (45 loc) · 1.68 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import csv
import numpy as np
def get_line(file_path):
f = open(file_path, 'r', errors='ignore', encoding='GB2312')
line = f.readline()
line = line.strip('\n')
line.encode("utf-8")
f.close()
return line
if __name__ == '__main__':
root_dir = 'data/2000/'
folders = ['neg/', 'pos/']
output_path = 'data/'
train_path = output_path + 'train.tsv'
train = open(train_path, 'w', encoding='utf-8', newline='')
train_writer = csv.writer(train, delimiter='\t')
dev_path = output_path + 'dev.tsv'
dev = open(dev_path, 'w', encoding='utf-8', newline='')
dev_writer = csv.writer(dev, delimiter='\t')
test_path = output_path + 'test.tsv'
test = open(test_path, 'w', encoding='utf-8', newline='')
test_writer = csv.writer(test, delimiter='\t')
length_list = []
for folder in folders:
input_path = root_dir + folder
i = 0
for parent, directories, files in os.walk(input_path):
file_count = len(files)
print(file_count)
for file in files:
content = get_line(input_path + file)
length_list.append(len(content))
if i < int(file_count*0.8):
train_writer.writerow([content, folder])
elif int(file_count*0.8) <= i < int(file_count*0.9):
dev_writer.writerow([content, folder])
else:
test_writer.writerow([content, folder])
i = i + 1
train.close()
dev.close()
test.close()
print(np.max(length_list))
print(np.mean(length_list))