-
Notifications
You must be signed in to change notification settings - Fork 4
Description
Hi,
I noticed that message passing was added to the library. I'm interested in graph classification with message passing.
I was wondering if an example can be provided for this.
I have the following data, a graph consisting of 6 nodes each having 2 features, I need to construct an adjacency matrix and feature matrix and train with message passing network. An example file is attached for 10 graphs, the first column is the graph number and the last two columns are features. I have 10 graphs in this example.
How would I write code for loading this data and training it?
The real goal is to also identify graphs where one of the nodes is missing.
1,1,229.9100283176008,1.1902541030399987
1,2,230.47182154007461,1.058776646471805
1,3,203.189198652389,1.2398531706028166
1,4,204.5314318362828,1.153553470015844
1,5,185.64669584185978,1.2793633742545163
1,6,187.79421175584724,1.2198439576738058
2,1,229.4793702231205,2.330960340799244
2,2,230.33288586087744,2.210450003254505
2,3,203.11540479737127,2.3660695156585776
2,4,205.1700163108635,2.2992488439519665
2,5,185.68083877718777,2.3336671387774333
2,6,187.82261076079203,2.2953794181018194
3,1,229.32647579597085,-1.6042361520855672
3,2,230.66106436284386,-1.7481226493919342
3,3,202.93044042971965,-1.6135964029608023
3,4,204.93338840950247,-1.7067393831431075
3,5,185.57789923371803,-1.6103196248243055
3,6,188.24516335884968,-1.675625332691681
4,1,229.32882367683308,-1.6078158761501915
4,2,230.61681376907453,-1.736008671442035
4,3,202.95094620375633,-1.6236500454970282
4,4,204.89899232792726,-1.7011735459693618
4,5,185.6409650804477,-1.6271353064485021
4,6,188.25057680655323,-1.6762484217377236
5,1,230.01054032804672,2.466171048528725
5,2,230.54468404411324,2.342179997948466
5,3,202.93204096445686,2.5120332831973915
5,4,204.53248646119764,2.4362613310255226
5,5,185.79810866906044,2.5332757754491295
5,6,188.47975863206108,2.488929424115569
6,1,229.8512738011256,-0.0784807601982349
6,2,230.47171490662362,-0.19786009641288566
6,3,203.5063959707409,-0.05580110328207439
6,4,204.72183631454655,-0.1278216247793105
6,5,186.32332306504196,-0.031602383785374444
6,6,188.19302000871338,-0.07593593188648337
7,1,229.8407373900458,-0.08073549839860646
7,2,230.45752937146577,-0.2037788378524268
7,3,203.39274855559626,-0.07192003653233625
7,4,204.648717367102,-0.14605199324120002
7,5,186.00685748111547,-0.06285312285012232
7,6,187.97473760322154,-0.10808596076112409
8,1,229.32564275283303,0.2819165991854963
8,2,230.65149601075646,0.13935347898665917
8,3,202.89854691446166,0.2428692590302859
8,4,204.62697129166526,0.15248565532110503
8,5,185.63234871110154,0.22893237255190277
8,6,187.79581150015034,0.16823066116574453
9,1,229.57959752774198,2.9943233835287355
9,2,230.36740736050317,2.886351025206375
9,3,203.03815025014387,3.0001340936311043
9,4,204.52414181460338,2.9430842900344767
9,5,185.57389183018174,3.005285072530584
9,6,187.79948976767747,2.9790278914250785
10,1,229.40097705981987,-0.21886740450924871
10,2,230.35164722875328,-0.35836770227138204
10,3,202.89411232709537,-0.21348577568332344
10,4,204.64020598357496,-0.3003337905165334
10,5,185.56139436854855,-0.20822861329548692
10,6,188.13909142174575,-0.2662555763758106