-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathAirAPI_Windows.cpp
526 lines (426 loc) · 13.6 KB
/
AirAPI_Windows.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#include "pch.h"
#include "AirAPI_Windows.h"
#include "deps/hidapi-win/include/hidapi.h"
#include "deps/Fusion/Fusion/Fusion.h"
#include <iostream>
#include <mutex>
#include <array>
#include <cstdint>
#include <vector>
//Air USB VID and PID
#define AIR_VID 0x3318
#define AIR_PID 0x0424
#define AIR_2_PID 0x0428
#define AIR_2_PRO_PID 0x0432
#define AIR_2_ULTRA_PID 0x0426
//Is Tracking
bool g_isTracking = false;
//Is Listening
bool g_isListening = false;
// ticks are in nanoseconds, 1000 Hz packets
#define TICK_LEN (1.0f / 1E9f)
// based on 24bit signed int w/ FSR = +/-2000 dps, datasheet option
#define GYRO_SCALAR (1.0f / 8388608.0f * 2000.0f)
// based on 24bit signed int w/ FSR = +/-16 g, datasheet option
#define ACCEL_SCALAR (1.0f / 8388608.0f * 16.0f)
static int rows, cols;
static FusionEuler euler;
static FusionVector earth;
static FusionQuaternion qt;
HANDLE trackThread;
HANDLE listenThread;
hid_device* device;
hid_device* device4;
#define SAMPLE_RATE (1000) // replace this with actual sample rate
std::mutex mtx;
std::mutex it4;
typedef struct {
uint64_t tick;
int32_t ang_vel[3];
int32_t accel[3];
} air_sample;
static int
parse_report(const unsigned char* buffer_in, int size, air_sample* out_sample)
{
if (size != 64) {
printf("Invalid packet size");
return -1;
}
// clock in nanoseconds
buffer_in += 4;
out_sample->tick = ((uint64_t) * (buffer_in++));
out_sample->tick = out_sample->tick | (((uint64_t) * (buffer_in++)) << 8);
out_sample->tick = out_sample->tick | (((uint64_t) * (buffer_in++)) << 16);
out_sample->tick = out_sample->tick | (((uint64_t) * (buffer_in++)) << 24);
out_sample->tick = out_sample->tick | (((uint64_t) * (buffer_in++)) << 32);
out_sample->tick = out_sample->tick | (((uint64_t) * (buffer_in++)) << 40);
out_sample->tick = out_sample->tick | (((uint64_t) * (buffer_in++)) << 48);
out_sample->tick = out_sample->tick | (((uint64_t) * (buffer_in++)) << 56);
uint32_t t0v, t1v, t2v, t3v, t0a, t1a, t2a, t3a;
// gyroscope measurements
buffer_in += 6;
if (*(buffer_in + 2) & 0x80) {
t0v = (0xff << 24);
t3v = *(buffer_in++);
t1v = (*(buffer_in++) << 8);
t2v = (*(buffer_in++) << 16);
out_sample->ang_vel[0] = t0v | t1v | t2v | t3v;
// out_sample->ang_vel[0] = (0xff << 24) | *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
else {
t0v = (0x00 << 24);
t3v = *(buffer_in++);
t1v = (*(buffer_in++) << 8);
t2v = (*(buffer_in++) << 16);
out_sample->ang_vel[0] = t0v | t1v | t2v | t3v;
// out_sample->ang_vel[0] = *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
if (*(buffer_in + 2) & 0x80) {
t0v = (0xff << 24);
t3v = *(buffer_in++);
t1v = (*(buffer_in++) << 8);
t2v = (*(buffer_in++) << 16);
out_sample->ang_vel[1] = t0v | t1v | t2v | t3v;
// out_sample->ang_vel[1] = (0xff << 24) | *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
else {
t0v = (0x00 << 24);
t3v = *(buffer_in++);
t1v = (*(buffer_in++) << 8);
t2v = (*(buffer_in++) << 16);
out_sample->ang_vel[1] = t0v | t1v | t2v | t3v;
// out_sample->ang_vel[1] = *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
if (*(buffer_in + 2) & 0x80) {
t0v = (0xff << 24);
t3v = *(buffer_in++);
t1v = (*(buffer_in++) << 8);
t2v = (*(buffer_in++) << 16);
out_sample->ang_vel[2] = t0v | t1v | t2v | t3v;
// out_sample->ang_vel[2] = (0xff << 24) | *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
else {
t0v = (0x00 << 24);
t3v = *(buffer_in++);
t1v = (*(buffer_in++) << 8);
t2v = (*(buffer_in++) << 16);
out_sample->ang_vel[2] = t0v | t1v | t2v | t3v;
// out_sample->ang_vel[2] = *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
// accelerometer data
buffer_in += 6;
if (*(buffer_in + 2) & 0x80) {
t0a = (0xff << 24);
t3a = *(buffer_in++);
t1a = (*(buffer_in++) << 8);
t2a = (*(buffer_in++) << 16);
out_sample->accel[0] = t0a | t1a | t2a | t3a;
// out_sample->accel[0] = (0xff << 24) | *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
else {
t0a = (0x00 << 24);
t3a = *(buffer_in++);
t1a = (*(buffer_in++) << 8);
t2a = (*(buffer_in++) << 16);
out_sample->accel[0] = t0a | t1a | t2a | t3a;
// out_sample->accel[0] = *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
if (*(buffer_in + 2) & 0x80) {
t0a = (0xff << 24);
t3a = *(buffer_in++);
t1a = (*(buffer_in++) << 8);
t2a = (*(buffer_in++) << 16);
out_sample->accel[1] = t0a | t1a | t2a | t3a;
// out_sample->accel[1] = (0xff << 24) | *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
else {
t0a = (0x00 << 24);
t3a = *(buffer_in++);
t1a = (*(buffer_in++) << 8);
t2a = (*(buffer_in++) << 16);
out_sample->accel[1] = t0a | t1a | t2a | t3a;
// out_sample->accel[1] = *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
if (*(buffer_in + 2) & 0x80) {
t0a = (0xff << 24);
t3a = *(buffer_in++);
t1a = (*(buffer_in++) << 8);
t2a = (*(buffer_in++) << 16);
out_sample->accel[2] = t0a | t1a | t2a | t3a;
// out_sample->accel[2] = (0xff << 24) | *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
else {
t0a = (0x00 << 24);
t3a = *(buffer_in++);
t1a = (*(buffer_in++) << 8);
t2a = (*(buffer_in++) << 16);
out_sample->accel[2] = t0a | t1a | t2a | t3a;
// out_sample->accel[2] = *(buffer_in++) | (*(buffer_in++) << 8) | (*(buffer_in++) << 16);
}
return 0;
}
static void
process_ang_vel(const int32_t in_ang_vel[3], float out_vec[])
{
// these scale and bias corrections are all rough guesses
out_vec[0] = (float)(in_ang_vel[0]) * GYRO_SCALAR;
out_vec[1] = (float)(in_ang_vel[1]) * GYRO_SCALAR;
out_vec[2] = (float)(in_ang_vel[2]) * GYRO_SCALAR;
}
static void
process_accel(const int32_t in_accel[3], float out_vec[])
{
// these scale and bias corrections are all rough guesses
out_vec[0] = (float)(in_accel[0]) * ACCEL_SCALAR;
out_vec[1] = (float)(in_accel[1]) * ACCEL_SCALAR;
out_vec[2] = (float)(in_accel[2]) * ACCEL_SCALAR;
}
static hid_device_info* open_device()
{
struct hid_device_info* devs = NULL;
struct hid_device_info* devs_1 = hid_enumerate(AIR_VID, AIR_PID);
struct hid_device_info* devs_2 = hid_enumerate(AIR_VID, AIR_2_PID);
struct hid_device_info* devs_2_pro = hid_enumerate(AIR_VID, AIR_2_PRO_PID);
struct hid_device_info* devs_2_ultra = hid_enumerate(AIR_VID, AIR_2_ULTRA_PID);
if (devs_1 != NULL) {
devs = devs_1;
}
else if (devs_2 != NULL) {
devs = devs_2;
}
else if (devs_2_pro != NULL) {
devs = devs_2_pro;
}
else if (devs_2_ultra != NULL) {
devs = devs_2_ultra;
}
return devs;
}
static hid_device* open_device_by_interface(struct hid_device_info* devs, int interface_number)
{
hid_device* device = NULL;
struct hid_device_info* cur_dev = devs;
while (devs) {
if (cur_dev->interface_number == interface_number) {
device = hid_open_path(cur_dev->path);
std::cout << "Interface " << interface_number << " bound" << std::endl;
break;
}
cur_dev = cur_dev->next;
}
return device;
}
struct ThreadParams {
hid_device* device;
};
DWORD WINAPI track(LPVOID lpParam) {
//Thread to handle tracking
unsigned char buffer[64] = {};
uint64_t last_sample_tick = 0;
air_sample sample = {};
ThreadParams* params = static_cast<ThreadParams*>(lpParam);
//static FusionVector ang_vel = {}, accel_vec = {};
static float ang_vel[3] = {};
static float accel_vec[3] = {};
// Define calibration (replace with actual calibration data if available)
const FusionMatrix gyroscopeMisalignment = { 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f };
const FusionVector gyroscopeSensitivity = { 1.0f, 1.0f, 1.0f };
const FusionVector gyroscopeOffset = { 0.0f, 0.0f, 0.0f };
const FusionMatrix accelerometerMisalignment = { 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f };
const FusionVector accelerometerSensitivity = { 1.0f, 1.0f, 1.0f };
const FusionVector accelerometerOffset = { 0.0f, 0.0f, 0.0f };
const FusionMatrix softIronMatrix = { 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f };
const FusionVector hardIronOffset = { 0.0f, 0.0f, 0.0f };
// Initialise algorithms
FusionOffset offset;
FusionAhrs ahrs;
FusionOffsetInitialise(&offset, SAMPLE_RATE);
FusionAhrsInitialise(&ahrs);
// Set AHRS algorithm settings
const FusionAhrsSettings settings = {
.gain = 0.5f,
.accelerationRejection = 10.0f,
.magneticRejection = 20.0f,
.rejectionTimeout = 5 * SAMPLE_RATE, /* 5 seconds */
};
FusionAhrsSetSettings(&ahrs, &settings);
while (g_isTracking) {
try {
// code that might throw an exception
int res = hid_read(device, buffer, sizeof(buffer));
if (res < 0) {
break;
}
}
catch (const std::exception& e) {
// handle the exception
std::cerr << e.what();
}
//parse
parse_report(buffer, sizeof(buffer), &sample);
//process sample
process_ang_vel(sample.ang_vel, ang_vel);
process_accel(sample.accel, accel_vec);
// Acquire latest sensor data
const uint64_t timestamp = sample.tick; // replace this with actual gyroscope timestamp
FusionVector gyroscope = { ang_vel[0], ang_vel[1], ang_vel[2] }; // replace this with actual gyroscope data in degrees/s
FusionVector accelerometer = { accel_vec[0], accel_vec[1], accel_vec[2] }; // replace this with actual accelerometer data in g
// Apply calibration
gyroscope = FusionCalibrationInertial(gyroscope, gyroscopeMisalignment, gyroscopeSensitivity, gyroscopeOffset);
accelerometer = FusionCalibrationInertial(accelerometer, accelerometerMisalignment, accelerometerSensitivity, accelerometerOffset);
// Update gyroscope offset correction algorithm
gyroscope = FusionOffsetUpdate(&offset, gyroscope);
// Calculate delta time (in seconds) to account for gyroscope sample clock error
static uint64_t previousTimestamp;
const float deltaTime = (float)(timestamp - previousTimestamp) / (float)1e9;
previousTimestamp = timestamp;
// Update gyroscope AHRS algorithm
FusionAhrsUpdateNoMagnetometer(&ahrs, gyroscope, accelerometer, deltaTime);
//lock mutex and update values
mtx.lock();
qt = FusionAhrsGetQuaternion(&ahrs);
euler = FusionQuaternionToEuler(qt);
earth = FusionAhrsGetEarthAcceleration(&ahrs);
mtx.unlock();
}
return 0;
}
int brightness = 0;
DWORD WINAPI interface4Handler(LPVOID lpParam) {
//get initial brightness from device
std::array<uint8_t, 17> initBrightness = { 0x00, 0xfd, 0x1e, 0xb9, 0xf0, 0x68, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 };
hid_write(device4, initBrightness.data(), initBrightness.size());
while (g_isListening) {
std::array<uint8_t, 65> recv = {};
int res = hid_read(device4, recv.data(), recv.size());
if (res > 0) {
switch (recv[22]) {
case 0x03: //Brightness down press
it4.lock();
brightness = recv[30];
it4.unlock();
break;
case 0x02: //Brightness up press
it4.lock();
brightness = recv[30];
it4.unlock();
break;
default:
//std::cout << "Unknown Packet! " << (int)recv[22] << std::endl;
break;
}
switch (recv[15]) {
case 0x03: //Brightness from cmd
it4.lock();
brightness = recv[23];
it4.unlock();
break;
default:
//todo
break;
}
}
}
return 0;
}
int StartConnection()
{
if (g_isTracking) {
std::cout << "Already Tracking" << std::endl;
return 1;
}
else {
std::cout << "Opening Device" << std::endl;
// open devices
struct hid_device_info* devs = open_device();
if (devs->product_id == AIR_2_ULTRA_PID) {
device = open_device_by_interface(devs, 2); // for interface 3
device4 = open_device_by_interface(devs, 8); // for interface 4
}
else {
// for Air, Air2, and Air2 Pro
device = open_device_by_interface(devs, 3); // for interface 3
device4 = open_device_by_interface(devs, 4); // for interface 4
}
hid_free_enumeration(devs);
if (!device || !device4) {
std::cout << "Unable to open device" << std::endl;
return 1;
}
std::cout << "Sending Payload" << std::endl;
// open the floodgates
uint8_t magic_payload[] = { 0x00, 0xaa, 0xc5, 0xd1, 0x21, 0x42, 0x04, 0x00, 0x19, 0x01 };
int res = hid_write(device, magic_payload, sizeof(magic_payload));
if (res < 0) {
std::cout << "Unable to write to device" << std::endl;
return 1;
}
ThreadParams trackParams = { device };
g_isTracking = true;
std::cout << "Tracking Starting Thread" << std::endl;
//Start Tracking Thread
trackThread = CreateThread(NULL, 0, track, &trackParams, 0, NULL);
if (trackThread == NULL) {
std::cout << "Failed to create thread" << std::endl;
return 1;
}
ThreadParams listenParams = { };
g_isListening = true;
//Start Interface 4 listener
listenThread = CreateThread(NULL, 0, interface4Handler, &listenParams, 0, NULL);
if (listenThread == NULL) {
std::cout << "Failed to create thread" << std::endl;
return 1;
}
std::cout << "Listenr Thread Started" << std::endl;
return 1;
}
}
int StopConnection()
{
if (g_isTracking) {
g_isTracking = false;
g_isListening = false;
// Wait for the track thread to finish
WaitForSingleObject(trackThread, INFINITE);
TerminateThread(trackThread, 0);
CloseHandle(trackThread);
// Wait for the listen thread to finish
WaitForSingleObject(listenThread, INFINITE);
TerminateThread(listenThread, 0);
CloseHandle(listenThread);
return 1;
}
else {
return -1;
}
}
float* q = new float[4];
float* GetQuaternion()
{
mtx.lock();
q[0] = qt.array[0];
q[1] = qt.array[1];
q[2] = qt.array[2];
q[3] = qt.array[3];
mtx.unlock();
return q;
}
float* e = new float[3];
float* GetEuler()
{
mtx.lock();
e[0] = euler.angle.pitch;
e[1] = euler.angle.roll;
e[2] = euler.angle.yaw;
mtx.unlock();
return e;
}
int GetBrightness()
{
int curBrightness;
it4.lock();
curBrightness = brightness;
it4.unlock();
return curBrightness;
}