-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
124 lines (104 loc) · 3.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import os
from datetime import datetime
import model.engine.trainer
import model.engine.dynamics_model_trainer
from model.config import get_cfg_defaults
import utils.logger as lg
import model.engine.landscape_plot
def train(cfg, iter):
# Create output directories
env_output_dir = os.path.join(cfg.OUTPUT.DIR, cfg.MUJOCO.ENV)
if cfg.OUTPUT.NAME == "timestamp":
output_dir_name = "{0:%Y-%m-%d %H:%M:%S}".format(datetime.now())
else:
output_dir_name = cfg.OUTPUT.NAME
output_dir = os.path.join(env_output_dir, output_dir_name)
output_rec_dir = os.path.join(output_dir, 'recordings')
output_weights_dir = os.path.join(output_dir, 'weights')
output_results_dir = os.path.join(output_dir, 'results')
os.makedirs(output_dir)
os.mkdir(output_weights_dir)
os.mkdir(output_results_dir)
if cfg.LOG.TESTING.ENABLED:
os.mkdir(output_rec_dir)
# Create logger
logger = lg.setup_logger("model.engine.trainer", output_dir, 'logs')
logger.info("Running with config:\n{}".format(cfg))
# Repeat for required number of iterations
for i in range(iter):
agent = model.engine.trainer.do_training(
cfg,
logger,
output_results_dir,
output_rec_dir,
output_weights_dir,
i
)
model.engine.landscape_plot.visualise2d(agent, output_results_dir, i)
def train_dynamics_model(cfg, iter):
# Create output directories
env_output_dir = os.path.join(cfg.OUTPUT.DIR, cfg.MUJOCO.ENV)
output_dir = os.path.join(env_output_dir, "{0:%Y-%m-%d %H:%M:%S}".format(datetime.now()))
output_rec_dir = os.path.join(output_dir, 'recordings')
output_weights_dir = os.path.join(output_dir, 'weights')
output_results_dir = os.path.join(output_dir, 'results')
os.makedirs(output_dir)
os.mkdir(output_weights_dir)
os.mkdir(output_results_dir)
if cfg.LOG.TESTING.ENABLED:
os.mkdir(output_rec_dir)
# Create logger
logger = lg.setup_logger("model.engine.dynamics_model_trainer", output_dir, 'logs')
logger.info("Running with config:\n{}".format(cfg))
# Train the dynamics model
model.engine.dynamics_model_trainer.do_training(
cfg,
logger,
output_results_dir,
output_rec_dir,
output_weights_dir
)
def inference(cfg):
pass
def main():
parser = argparse.ArgumentParser(description="PyTorch model-based RL.")
parser.add_argument(
"--config-file",
default="",
metavar="file",
help="path to config file",
type=str,
)
parser.add_argument(
"--mode",
default="train",
metavar="mode",
help="'train' or 'test' or 'dynamics'",
type=str,
)
parser.add_argument(
"--iter",
default=1,
help="Number of iterations",
type=int
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line",
default=[],
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
# build the config
cfg = get_cfg_defaults()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
# TRAIN
if args.mode == "train":
train(cfg, args.iter)
elif args.mode == "dynamics":
train_dynamics_model(cfg, args.iter)
if __name__ == "__main__":
main()