|
| 1 | +import os |
| 2 | +import cv2 |
| 3 | +import numpy as np |
| 4 | +import tensorflow as tf |
| 5 | +from tensorflow import keras |
| 6 | +from tensorflow.keras.preprocessing import image |
| 7 | + |
| 8 | + |
| 9 | +def predict_deepfake_video(video_path, model_path, model_weights_path, faceCascade_path): |
| 10 | + """ |
| 11 | + Predict if a video is a deepfake or not. |
| 12 | + """ |
| 13 | + |
| 14 | + # Load model and weights |
| 15 | + model = keras.models.load_model(model_path, compile=False) |
| 16 | + model.load_weights(model_weights_path) |
| 17 | + |
| 18 | + cap = cv2.VideoCapture(video_path) |
| 19 | + img_array = [] |
| 20 | + success = 1 |
| 21 | + i = 1 |
| 22 | + faceCascade = cv2.CascadeClassifier(faceCascade_path) |
| 23 | + |
| 24 | + while success and i <= 90: |
| 25 | + success, img = cap.read() |
| 26 | + try: |
| 27 | + imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
| 28 | + faces = faceCascade.detectMultiScale(imgGray, 1.1, 4) |
| 29 | + if np.shape(faces) == (1, 4): |
| 30 | + x, y, w, h = faces[0] |
| 31 | + imgCropped = img[y: y + h, x:x + w] |
| 32 | + imgCropped = cv2.resize(imgCropped, (112, 112)) |
| 33 | + img_array.append(imgCropped) |
| 34 | + i += 1 |
| 35 | + except: |
| 36 | + return "Provide a video with more than 90 frames" |
| 37 | + |
| 38 | + img_array = np.array(img_array) |
| 39 | + img_array = img_array.reshape(1, 90, 112, 112, 3) |
| 40 | + |
| 41 | + res = model.predict(img_array).round() |
| 42 | + if res[0][0] == 0: |
| 43 | + return "Real" |
| 44 | + else: |
| 45 | + return "Deepfake" |
| 46 | + |
| 47 | + |
| 48 | +def predict_deepfake_image(image_path, model_path, model_weights_path): |
| 49 | + """ |
| 50 | + Predict if an image is a deepfake or not. |
| 51 | + """ |
| 52 | + |
| 53 | + model = keras.models.load_model(model_path, compile=False) |
| 54 | + model.load_weights(model_weights_path) |
| 55 | + img = image.load_img(image_path, target_size=(256, 256)) |
| 56 | + x = image.img_to_array(img) |
| 57 | + x = np.expand_dims(x, axis=0) |
| 58 | + x = tf.image.resize(x, (256, 256)) |
| 59 | + x /= 255.0 |
| 60 | + res = model.predict(x) |
| 61 | + if(res[0][0] < 0): |
| 62 | + return "Deepfake" |
| 63 | + else: |
| 64 | + return "Real" |
| 65 | + |
| 66 | + |
| 67 | +def predict_gan_fake(image_path, model_path, model_weights_path): |
| 68 | + """ |
| 69 | + Predict if an image is a GAN Fake or Real. |
| 70 | + """ |
| 71 | + |
| 72 | + model = keras.models.load_model(model_path, compile=False) |
| 73 | + model.load_weights(model_weights_path) |
| 74 | + img = image.load_img(image_path, target_size=(256, 256)) |
| 75 | + x = image.img_to_array(img) |
| 76 | + x = np.expand_dims(x, axis=0) |
| 77 | + x = tf.image.resize(x, (256, 256)) |
| 78 | + x /= 255 |
| 79 | + |
| 80 | + res = model.predict(x) |
| 81 | + |
| 82 | + if(res[0][0] < 0): |
| 83 | + return "GAN Fake" |
| 84 | + else: |
| 85 | + return "Real" |
| 86 | + |
| 87 | + |
| 88 | +def predict(input_path, type): |
| 89 | + """ |
| 90 | + It takes input and type |
| 91 | + Based on the type it does the prediction on input |
| 92 | + "1" for deepfake video |
| 93 | + "2" for deepfake image |
| 94 | + "3" for GAN Fake |
| 95 | + """ |
| 96 | + |
| 97 | + physical_devices = tf.config.list_physical_devices('GPU') |
| 98 | + tf.config.experimental.set_memory_growth(physical_devices[0], True) |
| 99 | + |
| 100 | + # check if input path exists and is a file |
| 101 | + if not os.path.exists(input_path) or not os.path.isfile(input_path): |
| 102 | + return "Provide a valid path" |
| 103 | + |
| 104 | + if type == "1": |
| 105 | + model_path = "deepfake_video/video_model.h5" |
| 106 | + model_weights_path = "deepfake_video/Weights/model_weights" |
| 107 | + faceCascade_path = "deepfake_video/Resources/haarcascade_frontalface_default.xml" |
| 108 | + try: |
| 109 | + return predict_deepfake_video(input_path, model_path, model_weights_path, faceCascade_path) |
| 110 | + except: |
| 111 | + return "No video found" |
| 112 | + |
| 113 | + elif type == "2": |
| 114 | + model_path = "deepfake_image\CNN_SVM_Model\cnn_svm_model.h5" |
| 115 | + model_weights_path = "deepfake_image\Weights_CNN_SVM\model_weights" |
| 116 | + try: |
| 117 | + return predict_deepfake_image(input_path, model_path, model_weights_path) |
| 118 | + except: |
| 119 | + return "No image found" |
| 120 | + |
| 121 | + elif type == "3": |
| 122 | + model_path = "GAN_Fake_vs_Real/Inception_Resnet_SVM_Model\Inception_Resnet_svm_model.h5" |
| 123 | + model_weights_path = "GAN_Fake_vs_Real/Weights_Inception_Resnet_SVM/model_weights" |
| 124 | + try: |
| 125 | + return predict_gan_fake(input_path, model_path, model_weights_path) |
| 126 | + except: |
| 127 | + return "No image found" |
| 128 | + |
| 129 | + else: |
| 130 | + return "Invalid type" |
0 commit comments