forked from oreillymedia/Learning-OpenCV-3_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_16-02.cpp
220 lines (195 loc) · 7.17 KB
/
example_16-02.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Example 16-2. 2D Feature detectors and 2D Extra Features framework
//
// Note, while this code is free to use commercially, not all the algorithms are. For example
// sift is patented. If you are going to use this commercially, check out the non-free
// algorithms and secure license to use them.
//
#include <vector>
#include <iostream>
#include <cstdlib>
#include <fstream>
#include <algorithm>
#include <opencv2/opencv.hpp>
#include <opencv2/objdetect.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/xfeatures2d/nonfree.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/core/ocl.hpp>
using std::cout;
using std::cerr;
using std::vector;
using std::string;
using cv::Mat;
using cv::Point2f;
using cv::KeyPoint;
using cv::Scalar;
using cv::Ptr;
using cv::FastFeatureDetector;
using cv::SimpleBlobDetector;
using cv::DMatch;
using cv::BFMatcher;
using cv::DrawMatchesFlags;
using cv::Feature2D;
using cv::ORB;
using cv::BRISK;
using cv::AKAZE;
using cv::KAZE;
using cv::xfeatures2d::BriefDescriptorExtractor;
using cv::xfeatures2d::SURF;
using cv::xfeatures2d::SIFT;
using cv::xfeatures2d::DAISY;
using cv::xfeatures2d::FREAK;
const double kDistanceCoef = 4.0;
const int kMaxMatchingSize = 50;
inline void detect_and_compute(string type, Mat& img, vector<KeyPoint>& kpts, Mat& desc) {
if (type.find("fast") == 0) {
type = type.substr(4);
Ptr<FastFeatureDetector> detector = FastFeatureDetector::create(10, true);
detector->detect(img, kpts);
}
if (type.find("blob") == 0) {
type = type.substr(4);
Ptr<SimpleBlobDetector> detector = SimpleBlobDetector::create();
detector->detect(img, kpts);
}
if (type == "surf") {
Ptr<Feature2D> surf = SURF::create(800.0);
surf->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "sift") {
Ptr<Feature2D> sift = SIFT::create();
sift->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "orb") {
Ptr<ORB> orb = ORB::create();
orb->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "brisk") {
Ptr<BRISK> brisk = BRISK::create();
brisk->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "kaze") {
Ptr<KAZE> kaze = KAZE::create();
kaze->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "akaze") {
Ptr<AKAZE> akaze = AKAZE::create();
akaze->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "freak") {
Ptr<FREAK> freak = FREAK::create();
freak->compute(img, kpts, desc);
}
if (type == "daisy") {
Ptr<DAISY> daisy = DAISY::create();
daisy->compute(img, kpts, desc);
}
if (type == "brief") {
Ptr<BriefDescriptorExtractor> brief = BriefDescriptorExtractor::create(64);
brief->compute(img, kpts, desc);
}
}
inline void match(string type, Mat& desc1, Mat& desc2, vector<DMatch>& matches) {
matches.clear();
if (type == "bf") {
BFMatcher desc_matcher(cv::NORM_L2, true);
desc_matcher.match(desc1, desc2, matches, Mat());
}
if (type == "knn") {
BFMatcher desc_matcher(cv::NORM_L2, true);
vector< vector<DMatch> > vmatches;
desc_matcher.knnMatch(desc1, desc2, vmatches, 1);
for (int i = 0; i < static_cast<int>(vmatches.size()); ++i) {
if (!vmatches[i].size()) {
continue;
}
matches.push_back(vmatches[i][0]);
}
}
std::sort(matches.begin(), matches.end());
while (matches.front().distance * kDistanceCoef < matches.back().distance) {
matches.pop_back();
}
while (matches.size() > kMaxMatchingSize) {
matches.pop_back();
}
}
inline void findKeyPointsHomography(vector<KeyPoint>& kpts1, vector<KeyPoint>& kpts2,
vector<DMatch>& matches, vector<char>& match_mask) {
if (static_cast<int>(match_mask.size()) < 3) {
return;
}
vector<Point2f> pts1;
vector<Point2f> pts2;
for (int i = 0; i < static_cast<int>(matches.size()); ++i) {
pts1.push_back(kpts1[matches[i].queryIdx].pt);
pts2.push_back(kpts2[matches[i].trainIdx].pt);
}
findHomography(pts1, pts2, cv::RANSAC, 4, match_mask);
}
int main(int argc, char** argv) {
// Program expects at least four arguments:
// - descriptors type ("surf", "sift", "orb", "brisk",
// "kaze", "akaze", "freak", "daisy", "brief").
// For "brief", "freak" and "daisy" you also need a prefix
// that is either "blob" or "fast" (e.g. "fastbrief", "blobdaisy")
// - match algorithm ("bf", "knn")
// - path to the object image file
// - path to the scene image file
//
if (argc != 5) {
cerr << "\nError: wrong (you had: " << argc << ") number of arguments (should be 5).\n";
cerr << "\nExample 16-2. 2D Feature detectors and 2D Extra Features framework\n\n"
<< "Use:\n" << argv[0] << " <descriptors_type> <matching_algirthm> "
<< "<path/image_file1> <path/image_file2>\n"
<< "To run this demo\n\n"
<< "Program expects at least four arguments:\n"
<< " - descriptors type (\"surf\", \"sink\", \"orb\", \"brisk\",\n"
<< " \"kaze\", \"akaze\", \"freak\", \"daisy\", \"brief\").\n"
<< " For \"brief\", \"freak\" and \"daisy\" you also need a prefix\n"
<< " that is either \"blob\" or \"fast\" (e.g. \"fastbrief\", "
<< "\"blobdaisy\")\n"
<< " - match algorithm (\"bf\", \"knn\")\n"
<< " - path to the object image file\n"
<< " - path to the scene image file\n\n"
<< "Examples:\n"
<< argv[0] << " surf knn ../box.png ../box_in_scene.png\n"
<< argv[0] << " fastfreak bf ../box.png ../box_in_scene.png\n"
<< "\nNOTE: Not all of these methods are free, check licensing conditions!\n\n"
<< std::endl;
exit(1);
}
string desc_type(argv[1]);
string match_type(argv[2]);
string img_file1(argv[3]);
string img_file2(argv[4]);
Mat img1 = cv::imread(img_file1, CV_LOAD_IMAGE_COLOR);
Mat img2 = cv::imread(img_file2, CV_LOAD_IMAGE_COLOR);
if (img1.channels() != 1) {
cvtColor(img1, img1, cv::COLOR_RGB2GRAY);
}
if (img2.channels() != 1) {
cvtColor(img2, img2, cv::COLOR_RGB2GRAY);
}
vector<KeyPoint> kpts1;
vector<KeyPoint> kpts2;
Mat desc1;
Mat desc2;
vector<DMatch> matches;
detect_and_compute(desc_type, img1, kpts1, desc1);
detect_and_compute(desc_type, img2, kpts2, desc2);
match(match_type, desc1, desc2, matches);
vector<char> match_mask(matches.size(), 1);
findKeyPointsHomography(kpts1, kpts2, matches, match_mask);
Mat res;
cv::drawMatches(img1, kpts1, img2, kpts2, matches, res, Scalar::all(-1),
Scalar::all(-1), match_mask, DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
cv::imshow("result", res);
cv::waitKey(0);
return 0;
}