forked from oreillymedia/Learning-OpenCV-3_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_19-02.cpp
210 lines (197 loc) · 7.79 KB
/
example_19-02.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// Example 19-2. Computing the fundamental matrix using RANSAC
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
void help(char *argv[]) {
cout << "\nExample 19-2, Computing the fundamental matrix using RANSAC relating 2 images. Show the camera a checkerboard "
<< "\nCall"
<< "\n./example_19-2 <1:board_w> <2:board_h> <3:# of boards> <4:delay capture this many ms between frames> <5:scale the images 0-1>"
<< "\n\nExample call:"
<< "\n./example_19-2 9 6 20 500 0.5"
<< "\n\n -- use the checkerboard9x6.png provided"
<< "\n"
<< endl;
}
// args: [board_w] [board_h] [number_of_boards] [delay]? [scale]?
//
int main(int argc, char *argv[]) {
int n_boards = 0;
float image_sf = 0.5f;
float delay = 1.f;
int board_w = 0;
int board_h = 0;
// Will be set by input list
if (argc != 6) {
cout << "\nERROR: Wrong number of input parameters, need 5, got " << argc - 1 << "\n";
help(argv);
return -1;
}
board_w = atoi(argv[1]);
board_h = atoi(argv[2]);
n_boards = atoi(argv[3]);
delay = atof(argv[4]);
image_sf = atof(argv[5]);
int board_n = board_w * board_h;
cv::Size board_sz = cv::Size(board_w, board_h);
cv::VideoCapture capture(0);
if (!capture.isOpened()) {
cout << "\nCouldn't open the camera\n";
help(argv);
return -1;
}
// Allocate Storage
//
vector<vector<cv::Point2f> > image_points;
vector<vector<cv::Point3f> > object_points;
// Capture corner views; loop until we've got n_boards number of
// successful captures (meaning: all corners on each
// board are found).
//
double last_captured_timestamp = 0;
cv::Size image_size;
while (image_points.size() < (size_t)n_boards) {
cv::Mat image0, image;
capture >> image0;
image_size = image0.size();
resize(image0, image, cv::Size(), image_sf, image_sf, cv::INTER_LINEAR);
// Find the board
//
vector<cv::Point2f> corners;
bool found = cv::findChessboardCorners(image, board_sz, corners);
// Draw it
//
cv::drawChessboardCorners(image, board_sz, corners, found);
// If we got a good board, add it to our data
//
double timestamp = (double)clock() / CLOCKS_PER_SEC;
if (found && timestamp - last_captured_timestamp > 1) {
last_captured_timestamp = timestamp;
image ^= cv::Scalar::all(255);
cv::Mat mcorners(corners);
// do not copy the data
mcorners *= (1. / image_sf);
// scale corner coordinates
image_points.push_back(corners);
object_points.push_back(vector<cv::Point3f>());
vector<cv::Point3f> &opts = object_points.back();
opts.resize(board_n);
for (int j = 0; j < board_n; j++) {
opts[j] = cv::Point3f((float)(j / board_w), (float)(j % board_w), 0.f);
}
cout << "Collected our " << (int)image_points.size() << " of " << n_boards
<< " needed chessboard images\n" << endl;
}
// in color if we did collect the image
//
cv::imshow("Calibration", image);
if ((cv::waitKey(30) & 255) == 27)
return -1;
}
// end collection while() loop.
cv::destroyWindow("Calibration");
cout << "\n\n*** CALIBRATING THE CAMERA...\n" << endl;
// Calibrate the camera!
//
cv::Mat intrinsic_matrix, distortion_coeffs;
double err = cv::calibrateCamera(
object_points, // Vector of vectors of points
// from the calibration pattern
image_points, // Vector of vectors of projected
// locations (on images)
image_size, // Size of images used
intrinsic_matrix, // Output camera matrix
distortion_coeffs, // Output distortion coefficients
cv::noArray(), // We'll pass on the rotation vectors...
cv::noArray(), // ...and the translation vectors
cv::CALIB_ZERO_TANGENT_DIST | cv::CALIB_FIX_PRINCIPAL_POINT);
// Save the intrinsics and distortions
cout << " *** DONE!\n\nReprojection error is " << err
<< "\nStoring Intrinsics.xml and Distortions.xml files\n\n";
cv::FileStorage fs("intrinsics.xml", cv::FileStorage::WRITE);
fs << "image_width" << image_size.width << "image_height" << image_size.height
<< "camera_matrix" << intrinsic_matrix << "distortion_coefficients"
<< distortion_coeffs;
fs.release();
// Example of loading these matrices back in:
//
fs.open("intrinsics.xml", cv::FileStorage::READ);
cout << "\nimage width: " << (int)fs["image_width"];
cout << "\nimage height: " << (int)fs["image_height"];
cv::Mat intrinsic_matrix_loaded, distortion_coeffs_loaded;
fs["camera_matrix"] >> intrinsic_matrix_loaded;
fs["distortion_coefficients"] >> distortion_coeffs_loaded;
cout << "\nintrinsic matrix:" << intrinsic_matrix_loaded;
cout << "\ndistortion coefficients: " << distortion_coeffs_loaded << endl;
// Compute Fundamental Matrix Between the first
// and the second frames:
//
cv::undistortPoints(
image_points[0], // Observed point coordinates (from frame 0)
image_points[0], // undistorted coordinates (in this case,
// the same array as above)
intrinsic_matrix, // Intrinsics, from cv::calibrateCamera()
distortion_coeffs, // Distortion coefficients, also
// from cv::calibrateCamera()
cv::Mat(), // Rectification transformation (but
// here, we don't need this)
intrinsic_matrix // New camera matrix
);
cv::undistortPoints(
image_points[1], // Observed point coordinates (from frame 1)
image_points[1], // undistorted coordinates (in this case,
// the same array as above)
intrinsic_matrix, // Intrinsics, from cv::calibrateCamera()
distortion_coeffs, // Distortion coefficients, also
// from cv::calibrateCamera()
cv::Mat(), // Rectification transformation (but
// here, we don't need this)
intrinsic_matrix // New camera matrix
);
// Since all the found chessboard corners are inliers, i.e., they
// must satisfy epipolar constraints, here we are using the
// fastest, and the most accurate (in this case) 8-point algorithm.
//
cv::Mat F = cv::findFundamentalMat( // Return computed matrix
image_points[0], // Points from frame 0
image_points[1], // Points from frame 1
cv::FM_8POINT // Use the 8-point algorithm
);
cout << "Fundamental matrix: " << F << endl;
// Build the undistort map which we will use for all
// subsequent frames.
//
cv::Mat map1, map2;
cv::initUndistortRectifyMap(
intrinsic_matrix_loaded, // Our camera matrix
distortion_coeffs_loaded, // Our distortion coefficients
cv::Mat(), // (Optional) Rectification, don't
// need.
intrinsic_matrix_loaded, // "New" matrix, here it's the same
// as the first argument.
image_size, // Size of undistorted image we want
CV_16SC2, // Specifies the format of map to use
map1, // Integerized coordinates
map2 // Fixed-point offsets for
// elements of map1
);
// Just run the camera to the screen, now showing the raw and
// the undistorted image.
//
for (;;) {
cv::Mat image, image0;
capture >> image0;
if (image0.empty())
break;
cv::remap(image0, // Input image
image, // Output image
map1, // Integer part of map
map2, // Fixed point part of map
cv::INTER_LINEAR, cv::BORDER_CONSTANT,
cv::Scalar() // Set border values to black
);
cv::imshow("Undistorted", image);
if ((cv::waitKey(30) & 255) == 27)
break;
}
return 1;
}