diff --git a/.gitignore b/.gitignore index adbb97d..08d780c 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,3 @@ -data/ \ No newline at end of file +data/ + +venv/** \ No newline at end of file diff --git a/3_export_spacy.sh b/3_export_spacy.sh index ba6dd42..0fe4515 100755 --- a/3_export_spacy.sh +++ b/3_export_spacy.sh @@ -14,6 +14,6 @@ python spacy_vectors.py $VECTORS_FILE $OUTPUT_FOLDER_VECTORS $OUTPUT_FOLDER_MODE # now create python package python -m spacy package $OUTPUT_FOLDER_MODEL $PACKAGE_FOLDER -pushd $PACKAGE_FOLDER/it_vectors_wiki_lg-1.0.0 +pushd $PACKAGE_FOLDER/it_vectors_wiki_lg-1.0.1 python setup.py sdist popd diff --git a/README.md b/README.md index 95efb48..9a00e33 100644 --- a/README.md +++ b/README.md @@ -36,7 +36,7 @@ Option 1: do the preceding steps to train the vectors and then load the vectors Option 2: install with pip the complete model from [there](https://github.com/MartinoMensio/it_vectors_wiki_spacy/releases/download/v1.0/it_vectors_wiki_lg-1.0.0.tar.gz) with the following command: ```bash -pip install -U https://github.com/MartinoMensio/it_vectors_wiki_spacy/releases/download/v1.0/it_vectors_wiki_lg-1.0.0.tar.gz +pip install -U https://github.com/MartinoMensio/it_vectors_wiki_spacy/releases/download/v1.0.1/it_vectors_wiki_lg-1.0.1.tar.gz ``` then simply load the model in SpaCy with `nlp = spacy.load('it_vectors_wiki_lg')` diff --git a/spacy_vectors.py b/spacy_vectors.py index 2873c1b..6d5e8a7 100644 --- a/spacy_vectors.py +++ b/spacy_vectors.py @@ -5,7 +5,7 @@ def update_progress(curr, tot): workdone = curr/tot - print("\rProgress: [{0:50s}] {1:.1f}% - {2}/{3}".format('#' * int(workdone * 50), workdone*100, curr, tot), + print("\rProgress: [{0:50s}] {1:.1f}% - {2}/{3}".format('#' * int(workdone * 50), workdone*100, curr, tot), end="", flush=True) @plac.annotations( @@ -37,8 +37,8 @@ def main(input_file, output_folder_vectors=None, output_folder_model=None): # edit package details nlp.meta['name'] = 'vectors_wiki_lg' nlp.meta['lang'] = 'it' - nlp.meta['version'] = '1.0.0' - nlp.meta['spacy_version'] = '>=2.0.0,<3.0.0' + nlp.meta['version'] = '1.0.1' + nlp.meta['spacy_version'] = '>=2.1.0,<3.0.0' nlp.meta['description'] = '300-dimensional word vectors trained on Wikipedia with GloVe.' nlp.meta['author'] = 'Martino Mensio' nlp.meta['email'] = 'martinomensio@outlook.it'