Skip to content

[regression,combinatorics,sampling]SparseRegression/DiscreteRegression:稀疏回归/离散回归,以及排列组合上的采样 #18

Open
@shouldsee

Description

@shouldsee

神经网络对离散性质的处理是糟糕的.尽管Softmax可以模拟(1,0,0)这种one-hot矢量,但是并不能完全满足(1,0,0) 中的后两位为零的约束条件.这就造成了一些信息的泄漏,导致模型约束不能满足.相比较之下,蒙特卡罗模拟能够更好地满足这种约束条件.但是MCMC/hill-climbing并不总是最速解

需要继续考察一下是否存在好的稀疏回归算法.

为了处理离散域上的采样,考虑如下分布.

$$
\begin{align}
x &\sim Perm(D,beta,S_n)\\
x &\in S_n \\
e.g.: \, x &= \{1,2,3,4,5\} \,or\, \{1,3,2,4,5\} \,or \dots \\
P(x) &= C \exp( - beta \sum_i D[i,x[i] ]  )
\end{align}
$$

目前没有找到现有的采样算法.望各路大神指教.我稍稍写了一个heuristics但是显然只能暂时用用

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions