forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export.py
141 lines (120 loc) · 4.47 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
import yaml
from paddleseg.cvlibs import Config
from paddleseg.utils import logger
import datasets, models
def parse_args():
parser = argparse.ArgumentParser(description='Model export.')
parser.add_argument(
"--config", help="The config file.", type=str, required=True)
parser.add_argument(
'--model_path', help='The path of model for export', type=str)
parser.add_argument(
'--save_dir',
help='The directory for saving the exported model',
type=str,
default='./output/inference_model')
parser.add_argument(
'--output_op',
choices=['argmax', 'softmax', 'none'],
default="argmax",
help="Select which op to be appended to output result, default: argmax")
parser.add_argument(
'--without_argmax',
help='Do not add the argmax operation at the end of the network. [Deprecated]',
action='store_true')
parser.add_argument(
'--with_softmax',
help='Add the softmax operation at the end of the network. [Deprecated]',
action='store_true')
parser.add_argument(
"--input_shape",
nargs='+',
help="Export the model with fixed input shape, such as 1 3 1024 1024.",
type=int,
default=None)
return parser.parse_args()
class SavedSegmentationNet(paddle.nn.Layer):
def __init__(self, net, output_op):
super().__init__()
self.net = net
self.output_op = output_op
assert output_op in ['argmax', 'softmax'], \
"output_op should in ['argmax', 'softmax']"
def forward(self, x):
outs = self.net(x)
new_outs = []
for out in outs:
if self.output_op == 'argmax':
out = paddle.argmax(out, axis=1, dtype='int32')
elif self.output_op == 'softmax':
out = paddle.nn.functional.softmax(out, axis=1)
new_outs.append(out)
return new_outs
def main(args):
os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'
cfg = Config(args.config)
cfg.check_sync_info()
net = cfg.model
if args.model_path is not None:
para_state_dict = paddle.load(args.model_path)
net.set_dict(para_state_dict)
logger.info('Loaded trained params of model successfully.')
if args.input_shape is None:
shape = [None, 3, None, None]
else:
shape = args.input_shape
output_op = args.output_op
if args.without_argmax:
logger.warning(
'--without_argmax will be deprecated, please use --output_op')
output_op = 'none'
if args.with_softmax:
logger.warning(
'--with_softmax will be deprecated, please use --output_op')
output_op = 'softmax'
new_net = net if output_op == 'none' else SavedSegmentationNet(net,
output_op)
new_net.eval()
new_net = paddle.jit.to_static(
new_net,
input_spec=[paddle.static.InputSpec(
shape=shape, dtype='float32')])
save_path = os.path.join(args.save_dir, 'model')
paddle.jit.save(new_net, save_path)
yml_file = os.path.join(args.save_dir, 'deploy.yaml')
with open(yml_file, 'w') as file:
transforms = cfg.export_config.get('transforms', [{
'type': 'Normalize'
}])
output_dtype = 'int32' if output_op == 'argmax' else 'float32'
data = {
'Deploy': {
'model': 'model.pdmodel',
'params': 'model.pdiparams',
'transforms': transforms,
'input_shape': shape,
'output_op': output_op,
'output_dtype': output_dtype
}
}
yaml.dump(data, file)
logger.info(f'The inference model is saved in {args.save_dir}')
if __name__ == '__main__':
args = parse_args()
main(args)