-
Notifications
You must be signed in to change notification settings - Fork 35
/
predict.py
178 lines (134 loc) · 6.34 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import numpy as np
import nibabel as nib
from glob import glob
from tensorflow.keras.models import load_model
def read_brain(brain_dir, mode='train', x0=42, x1=194, y0=29, y1=221, z0=2, z1=146):
"""
A function that reads and crops a brain modalities (nii.gz format)
Parameters
----------
brain_dir : string
The path to a folder that contains MRI modalities of a specific brain
mode : string
'train' or 'validation' mode. The default is 'train'.
x0, x1, y0, y1, z0, z1 : int
The coordinates to crop 3D brain volume. For example, a brain volume with the
shape [x,y,z,modalites] is cropped [x0:x1, y0:y1, z0:z1, :] to have the shape
[x1-x0, y1-y0, z1-z0, modalities]. One can calculate the x0,x1,... by calculating
none zero pixels through dataset. Note that the final three shapes must be divisible
by the network downscale rate.
Returns
-------
all_modalities : array
The cropped modalities (+ gt if mode='train')
brain_affine : array
The affine matrix of the input brain volume
brain_name : str
The name of the input brain volume
"""
brain_dir = os.path.normpath(brain_dir)
flair = glob( os.path.join(brain_dir, '*_flair*.nii.gz'))
t1 = glob( os.path.join(brain_dir, '*_t1*.nii.gz'))
t1ce = glob( os.path.join(brain_dir, '*_t1ce*.nii.gz'))
t2 = glob( os.path.join(brain_dir, '*_t2*.nii.gz'))
if mode=='train':
gt = glob( os.path.join(brain_dir, '*_seg*.nii.gz'))
modalities_dir = [flair[0], t1[0], t1ce[0], t2[0], gt[0]]
elif mode=='validation':
modalities_dir = [flair[0], t1[0], t1ce[0], t2[0]]
all_modalities = []
for modality in modalities_dir:
nifti_file = nib.load(modality)
brain_numpy = np.asarray(nifti_file.dataobj)
all_modalities.append(brain_numpy)
# all modalities have the same affine, so we take one of them (the last one in this case),
# affine is just saved for preparing the predicted nii.gz file in the future.
brain_affine = nifti_file.affine
all_modalities = np.array(all_modalities)
all_modalities = np.rint(all_modalities).astype(np.int16)
all_modalities = all_modalities[:, x0:x1, y0:y1, z0:z1]
# to fit keras channel last model
all_modalities = np.transpose(all_modalities)
# tumor grade + name
brain_name = os.path.basename(os.path.split(brain_dir)[0]) + '_' + os.path.basename(brain_dir)
return all_modalities, brain_affine, brain_name
def normalize_slice(slice):
"""
Removes 1% of the top and bottom intensities and perform
normalization on the input 2D slice.
"""
b = np.percentile(slice, 99)
t = np.percentile(slice, 1)
slice = np.clip(slice, t, b)
if np.std(slice)==0:
return slice
else:
slice = (slice - np.mean(slice)) / np.std(slice)
return slice
def normalize_volume(input_volume):
"""
Perform a slice-based normalization on each modalities of input volume.
"""
normalized_slices = np.zeros_like(input_volume).astype(np.float32)
for slice_ix in range(4):
normalized_slices[slice_ix] = input_volume[slice_ix]
for mode_ix in range(input_volume.shape[1]):
normalized_slices[slice_ix][mode_ix] = normalize_slice(input_volume[slice_ix][mode_ix])
return normalized_slices
def save_predicted_results(prediction, brain_affine, view, output_dir, z_main=155, z0=2, z1=146, y_main=240, y0=29, y1=221, x_main=240, x0=42, x1=194):
"""
Save the segmented results into a .nii.gz file, so that it can be uploaded to the BraTS server.
Note that to correctly save the segmented brains, it is necessery to set x0, x1, ... correctly.
Parameters
----------
prediction : array
The predictred brain.
brain_affine : array
The affine matrix of the predicted brain volume
view : str
'axial', 'sagittal' or 'coronal'. The 'view' is needed to reconstruct output axes.
output_dir : str
The path to save .nii.gz file.
"""
prediction = np.argmax(prediction, axis=-1).astype(np.uint16)
prediction[prediction==3] = 4
if view=="axial":
prediction = np.pad(prediction, ((z0, z_main-z1), (y0, y_main-y1), (x0, x_main-x1)), 'constant')
prediction = prediction.transpose(2,1,0)
elif view=="sagital":
prediction = np.pad(prediction, ((x0, x_main-x1), (y0, y_main-y1), (z0 , z_main-z1)), 'constant')
elif view=="coronal":
prediction = np.pad(prediction, ((y0, y_main-y1), (x0, x_main-x1), (z0 , z_main-z1)), 'constant')
prediction = prediction.transpose(1,0,2)
#
prediction_ni = nib.Nifti1Image(prediction, brain_affine)
prediction_ni.to_filename(output_dir+ '.nii.gz')
if __name__ == '__main__':
val_data_dir = '/path/to/data/*'
view = 'axial'
saved_model_dir = '/path/to/a/trained/model.hdf5' #ex './save/axial_fold0/model.hdf5'
save_pred_dir = './predict/'
batch_size = 32
if not os.path.isdir(save_pred_dir):
os.mkdir(save_pred_dir)
all_brains_dir = glob(val_data_dir)
all_brains_dir.sort()
if view == 'axial':
view_axes = (0, 1, 2, 3)
elif view == 'sagittal':
view_axes = (2, 1, 0, 3)
elif view == 'coronal':
view_axes = (1, 2, 0, 3)
else:
ValueError('unknown input view => {}'.format(view))
model = load_model(saved_model_dir, compile=False)
for brain_dir in all_brains_dir:
if os.path.isdir(brain_dir):
print("Volume ID: ", os.path.basename(brain_dir))
all_modalities, brain_affine, _ = read_brain(brain_dir, mode='validation')
all_modalities = all_modalities.transpose(view_axes)
all_modalities = normalize_volume(all_modalities)
prediction = model.predict(all_modalities, batch_size=batch_size, verbose=1)
output_dir = os.path.join(save_pred_dir, os.path.basename(brain_dir))
save_predicted_results(prediction, brain_affine, view, output_dir)