-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpoi_id.py
380 lines (310 loc) · 14.8 KB
/
poi_id.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/python
import sys
import pickle
import pprint
pp = pprint.PrettyPrinter(indent=4)
import pandas as pd
import numpy as np
from time import time
import operator
from sklearn.feature_selection import VarianceThreshold
from sklearn.feature_selection import SelectFromModel
from sklearn.tree import DecisionTreeClassifier
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.feature_selection import mutual_info_classif
from sklearn import preprocessing
from sklearn.cross_validation import train_test_split
from sklearn.metrics import classification_report
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn import tree
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
import sklearn.pipeline
from sklearn.decomposition import PCA
from sklearn.cross_validation import StratifiedShuffleSplit
from sklearn.grid_search import GridSearchCV
sys.path.append("../tools/")
from feature_format import featureFormat, targetFeatureSplit
from tester import dump_classifier_and_data
from tester import test_classifier
### Task 1: Select what features you'll use.
### features_list is a list of strings, each of which is a feature name.
### The first feature must be "poi".
features_list = ['poi','salary', 'to_messages', 'deferral_payments',
'total_payments', 'exercised_stock_options', 'bonus', 'restricted_stock',
'shared_receipt_with_poi', 'restricted_stock_deferred', 'total_stock_value',
'expenses', 'loan_advances', 'from_messages', 'other', 'from_this_person_to_poi',
'director_fees', 'deferred_income', 'long_term_incentive', 'from_poi_to_this_person']
### Load the dictionary containing the dataset
with open("final_project_dataset.pkl", "r") as data_file:
data_dict = pickle.load(data_file)
### Explore features of data
print "Number of people: %d" % (len(data_dict))
print "Number of features: %d" % (len(data_dict['METTS MARK']))
print
poi_names = open("../final_project/poi_names.txt").read().split('\n')
poi_y = [name for name in poi_names if "(y)" in name]
poi_n = [name for name in poi_names if "(n)" in name]
print "Number of POI in poi_names.txt: %d" % len(poi_y + poi_n)
poi_count = 0
for person in data_dict:
if data_dict[person]["poi"]==1:
poi_count +=1
print "Number of POI in dataset: %d" % (poi_count)
print
def neg_nan_count(data_dict):
'''returns a dictionary containing the number of NaNs for each feature and the number of negative numbers for each feature'''
keys_w_nans = dict((key, 0) for key, value in data_dict['METTS MARK'].iteritems())
keys_w_negs = dict((key, 0) for key, value in data_dict['METTS MARK'].iteritems())
for person in data_dict:
for key, value in data_dict[person].iteritems():
if value == "NaN":
keys_w_nans[key] += 1
elif value < 0:
keys_w_negs[key] += 1
return keys_w_nans, keys_w_negs
keys_w_nans, keys_w_negs = neg_nan_count(data_dict)
print "Number of NaNs:"
pp.pprint(keys_w_nans)
print
print "Number of Negative Values"
pp.pprint(keys_w_negs)
### Task 2: Remove outliers/fix misentries/change negative values
data_dict['BELFER ROBERT']['director_fees'] = 102500
data_dict['BELFER ROBERT']['deferred_income'] = -102500
data_dict['BELFER ROBERT']['deferral_payments'] = 'NaN'
data_dict['BELFER ROBERT']['expenses'] = 3285
data_dict['BELFER ROBERT']['total_payments'] = 102500
data_dict['BELFER ROBERT']['restricted_stock'] = 44093
data_dict['BELFER ROBERT']['restricted_stock_deferred'] = -44093
data_dict['BELFER ROBERT']['total_stock_value'] = "NaN"
data_dict['BHATNAGAR SANJAY']['exercised_stock_options'] = 15456290
data_dict['BHATNAGAR SANJAY']['restricted_stock'] = 2604490
data_dict['BHATNAGAR SANJAY']['restricted_stock_deferred'] = -2604490
data_dict['BHATNAGAR SANJAY']['total_stock_value'] = 15456290
data_dict['BHATNAGAR SANJAY']['total_payments'] = 137864
data_dict['BHATNAGAR SANJAY']['other'] = 'NaN'
for person in data_dict:
if data_dict[person]['deferred_income'] < 0 and data_dict[person]['deferred_income'] != "NaN":
data_dict[person]['deferred_income'] = - data_dict[person]['deferred_income']
for person in data_dict:
if data_dict[person]['restricted_stock_deferred'] < 0 and data_dict[person]['restricted_stock_deferred'] != "NaN":
data_dict[person]['restricted_stock_deferred'] = - data_dict[person]['restricted_stock_deferred']
data_dict.pop('TOTAL')
data_dict.pop('THE TRAVEL AGENCY IN THE PARK')
### Task 3: Create new feature(s)
def create_ratio(data_dict, ratio_name, numerator, denominator):
'''Calcultes the ratio between a given numerator and denominator
Names the ratio "ratio_name"
Returns the the updated dictionary with the ratio values'''
for person in data_dict:
if data_dict[person][numerator] == 'NaN' or data_dict[person][denominator] == 'NaN':
data_dict[person][ratio_name] = 'NaN'
else:
data_dict[person][ratio_name] = float(data_dict[person][numerator])/float(data_dict[person][denominator])
return data_dict
data_dict = create_ratio(data_dict, 'sal_total', 'salary', 'total_payments')
data_dict = create_ratio(data_dict, 'bon_total', 'bonus', 'total_payments')
data_dict = create_ratio(data_dict, 'sal_bon', 'salary', 'bonus')
data_dict = create_ratio(data_dict, 'stock_pay', 'total_stock_value', 'total_payments')
data_dict = create_ratio(data_dict, 'excer_stock', 'exercised_stock_options', 'total_stock_value')
### Store to my_dataset for easy export below.
my_dataset = data_dict
### Extract features and labels from dataset for local testing
data = featureFormat(my_dataset, features_list, sort_keys = True)
labels, features = targetFeatureSplit(data)
from sklearn.cross_validation import train_test_split
features_train, features_test, labels_train, labels_test = \
train_test_split(features, labels, test_size=0.3, random_state=42)
### Task 4: Try a varity of classifiers
### Please name your classifier clf for easy export below.
### Note that if you want to do PCA or other multi-stage operations,
### you'll need to use Pipelines. For more info:
### http://scikit-learn.org/stable/modules/pipeline.html
import matplotlib.pyplot as plt
from matplotlib import colors
from matplotlib.colors import ListedColormap
ddl_heat = ['#DBDBDB','#DCD5CC','#DCCEBE','#DDC8AF','#DEC2A0','#DEBB91',\
'#DFB583','#DFAE74','#E0A865','#E1A256','#E19B48','#E29539']
ddlheatmap = colors.ListedColormap(ddl_heat)
def plot_classification_report(cr, title=None, cmap=ddlheatmap):
title = title or 'Classification report'
lines = cr.split('\n')
classes = []
matrix = []
for line in lines[2:(len(lines)-3)]:
s = line.split()
classes.append(s[0])
value = [float(x) for x in s[1: len(s) - 1]]
matrix.append(value)
fig, ax = plt.subplots(1)
for column in range(len(matrix)+1):
for row in range(len(classes)):
txt = matrix[row][column]
ax.text(column,row,matrix[row][column],va='center',ha='center')
fig = plt.imshow(matrix, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
x_tick_marks = np.arange(len(classes)+1)
y_tick_marks = np.arange(len(classes))
plt.xticks(x_tick_marks, ['precision', 'recall', 'f1-score'], rotation=45)
plt.yticks(y_tick_marks, classes)
plt.ylabel('Classes')
plt.xlabel('Measures')
plt.show()
def run_clf(clf, features_train, features_test, labels_train, labels_test):
''' takes a classifier and training and test data
prints performance time and metrics'''
t0 = time()
clf.fit(features_train, labels_train)
print "training time:", round(time()-t0, 3), "s"
t0 = time()
labels_prediction = clf.predict(features_test)
print "prediction time:", round(time()-t0, 3), "s"
report = classification_report(labels_test, labels_prediction)
print report
plot_classification_report(report)
### Try the effect of adding features on precision/recall/ f1scores
def new_feature(feature_list, feature_name, dataset):
feature_list.append(feature_name)
data = featureFormat(my_dataset, features_list, sort_keys = True)
labels, features = targetFeatureSplit(data)
from sklearn.cross_validation import train_test_split
features_train, features_test, labels_train, labels_test = \
train_test_split(features, labels, test_size=0.3, random_state=42)
run_clf(neigh_clf, preprocessing.MinMaxScaler().fit_transform(features_train),
preprocessing.MinMaxScaler().fit_transform(features_test), labels_train, labels_test)
feature_list.remove(feature_name)
print "Original features only"
neigh_clf = KNeighborsClassifier(n_neighbors = 3)
run_clf(neigh_clf, preprocessing.MinMaxScaler().fit_transform(features_train),
preprocessing.MinMaxScaler().fit_transform(features_test), labels_train, labels_test)
print "Adding salary/total payments ratio"
new_feature(features_list, 'sal_total', my_dataset)
print "Adding bonus/total payments ratio"
new_feature(features_list, 'bon_total', my_dataset)
print "Adding salary/total payments ratio"
new_feature(features_list, 'sal_bon', my_dataset)
print "Adding total stock/total payments ratio"
new_feature(features_list, 'stock_pay', my_dataset)
print "Adding excercised stock/tootal stock ratio"
new_feature(features_list, 'excer_stock', my_dataset)
features_list.append('sal_total')
features_list.append('bon_total')
features_list.append('sal_bon')
features_list.append('stock_pay')
features_list.append('excer_stock')
print "Naive Bayes Classifier:"
nb_clf = GaussianNB()
run_clf(nb_clf, features_train, features_test, labels_train, labels_test)
print "Support Vector Classifier (w scaling)"
svm_clf = SVC(kernel="rbf", C = 10000)
run_clf(svm_clf, preprocessing.MinMaxScaler().fit_transform(features_train),
preprocessing.MinMaxScaler().fit_transform(features_test), labels_train, labels_test)
print "Decision Tree"
split = tree.DecisionTreeClassifier(min_samples_split = 10)
run_clf(split, features_train, features_test, labels_train, labels_test)
print "K Nearest Neighbors (w Scaling)"
run_clf(neigh_clf, preprocessing.MinMaxScaler().fit_transform(features_train),
preprocessing.MinMaxScaler().fit_transform(features_test), labels_train, labels_test)
print "Stochastic Gradient Descent (w scaling)"
sgd_clf = SGDClassifier(loss="log")
run_clf(sgd_clf, preprocessing.MinMaxScaler().fit_transform(features_train),
preprocessing.MinMaxScaler().fit_transform(features_test), labels_train, labels_test)
print "Random Forest"
rando = RandomForestClassifier(n_estimators=10)
run_clf(rando, features_train, features_test, labels_train, labels_test)
print "Adaboost"
ada_clf = AdaBoostClassifier(n_estimators=100)
run_clf(ada_clf, features_train, features_test, labels_train, labels_test)
### Based on out of the box performance, decided to put kNN and adaboost into pipelines
print "kNN pipeline"
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))
select = SelectKBest(score_func = chi2, k = 10)
pca = PCA(n_components = 5)
kneighs = KNeighborsClassifier(n_neighbors = 3, n_jobs = -1)
knn_steps = [('scaling', scaler),
('feature_selection', select),
('reduce_dim', pca),
('k_neighbors', kneighs)]
kNN_pipeline = sklearn.pipeline.Pipeline(knn_steps)
kNN_pipeline.fit(features_train, labels_train)
labels_prediction = kNN_pipeline.predict(features_test)
report = classification_report(labels_test, labels_prediction)
print(report)
print "adaboost pipeline"
ada = AdaBoostClassifier(n_estimators=100)
ada_steps = [('feature_selection', select),
('reduce_dim', pca),
('adaboost', ada)]
ada_pipeline = sklearn.pipeline.Pipeline(ada_steps)
ada_pipeline.fit(features_train, labels_train)
labels_prediction = ada_pipeline.predict(features_test)
report = classification_report(labels_test, labels_prediction)
print(report)
### Task 5: Tune your classifier to achieve better than .3 precision and recall
### using our testing script. Check the tester.py script in the final project
### folder for details on the evaluation method, especially the test_classifier
### function. Because of the small size of the dataset, the script uses
### stratified shuffle split cross validation. For more info:
### http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedShuffleSplit.html
print "kNN parameter search"
knn_parameters = dict(feature_selection__k = [5, 10, 15, 20],
feature_selection__score_func = [chi2, mutual_info_classif],
reduce_dim__n_components = [1, 2, 3, 4],
k_neighbors__n_neighbors = [3, 5, 7, 9],
k_neighbors__n_jobs = [-1],
k_neighbors__algorithm = ['auto', 'ball_tree', 'kd_tree']
)
cv = StratifiedShuffleSplit(labels, 100, random_state = 42)
kNN_gs = GridSearchCV(kNN_pipeline, param_grid = knn_parameters, scoring = 'f1')
t0 = time()
kNN_gs.fit(features, labels)
print "training time:", round(time()-t0, 3), "s"
t0 = time()
labels_predictions = kNN_gs.predict(features)
print "prediction time:", round(time()-t0, 3), "s"
kNN_clf = kNN_gs.best_estimator_
report = classification_report(labels, labels_predictions)
print(report)
print kNN_clf
print
print
print "adaboost parameter search"
ada_parameters = dict(feature_selection__k = [5, 10, 15, 20],
feature_selection__score_func = [chi2, mutual_info_classif],
reduce_dim__n_components = [1, 2, 3, 4],
adaboost__n_estimators = [50, 75, 100, 200], )
ada_gs = GridSearchCV(ada_pipeline, param_grid = ada_parameters, scoring = 'f1')
t0 = time()
ada_gs.fit(features, labels)
print "training time:", round(time()-t0, 3), "s"
t0 = time()
labels_predictions = ada_gs.predict(features)
print "prediction time:", round(time()-t0, 3), "s"
ada_clf = ada_gs.best_estimator_
report = classification_report(labels, labels_predictions)
print(report)
print ada_clf
#clf = ada_clf
clf = kNN_clf
SKB_k = SelectKBest(score_func = mutual_info_classif, k = 20)
SKB_k.fit_transform(features, labels)
feature_scores = SKB_k.scores_
features_selected = [features_list[1:][i]for i in SKB_k.get_support(indices=True)]
features_scores_selected=[feature_scores[i]for i in SKB_k.get_support(indices=True)]
print
print
print 'Selected Features', features_selected
print 'Feature Scores', features_scores_selected
### Task 6: Dump your classifier, dataset, and features_list so anyone can
### check your results. You do not need to change anything below, but make sure
### that the version of poi_id.py that you submit can be run on its own and
### generates the necessary .pkl files for validating your results.
dump_classifier_and_data(clf, my_dataset, features_list)
test_classifier(clf, my_dataset, features_list, folds = 1000)