forked from tidyverse/dbplyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverb-copy-to.R
445 lines (388 loc) · 13.9 KB
/
verb-copy-to.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#' Copy a local data frame to a remote database
#'
#' @description
#' This is an implementation of the dplyr [copy_to()] generic and it mostly
#' a wrapper around [DBI::dbWriteTable()].
#'
#' It is useful for copying small amounts of data to a database for examples,
#' experiments, and joins. By default, it creates temporary tables which are
#' only visible within the current connection to the database.
#'
#' @export
#' @param df A local data frame, a `tbl_sql` from same source, or a `tbl_sql`
#' from another source. If from another source, all data must transition
#' through R in one pass, so it is only suitable for transferring small
#' amounts of data.
#' @param name Name of new remote table. Use a string to create the table
#' in the current catalog/schema. Use `I()` if you want to create it
#' in a specific catalog/schema, e.g. `I("schema.table")`.
#' @param types a character vector giving variable types to use for the columns.
#' See <https://www.sqlite.org/datatype3.html> for available types.
#' @param temporary if `TRUE`, will create a temporary table that is
#' local to this connection and will be automatically deleted when the
#' connection expires
#' @param unique_indexes a list of character vectors. Each element of the list
#' will create a new unique index over the specified column(s). Duplicate rows
#' will result in failure.
#' @param indexes a list of character vectors. Each element of the list
#' will create a new index.
#' @param analyze if `TRUE` (the default), will automatically ANALYZE the
#' new table so that the query optimiser has useful information.
#' @param in_transaction Should the table creation be wrapped in a transaction?
#' This typically makes things faster, but you may want to suppress if the
#' database doesn't support transactions, or you're wrapping in a transaction
#' higher up (and your database doesn't support nested transactions.)
#' @inheritParams dplyr::copy_to
#' @inherit arrange.tbl_lazy return
#' @seealso [copy_inline()] to use small data in an SQL query without actually
#' writing to a table.
#' @examples
#' library(dplyr, warn.conflicts = FALSE)
#'
#' df <- data.frame(x = 1:5, y = letters[5:1])
#' db <- copy_to(src_memdb(), df)
#' db
#'
#' df2 <- data.frame(y = c("a", "d"), fruit = c("apple", "date"))
#' # copy_to() is called automatically if you set copy = TRUE
#' # in the join functions
#' db %>% left_join(df2, copy = TRUE)
#' @importFrom dplyr copy_to
copy_to.src_sql <- function(dest,
df,
name = deparse(substitute(df)),
overwrite = FALSE,
types = NULL,
temporary = TRUE,
unique_indexes = NULL,
indexes = NULL,
analyze = TRUE,
...,
in_transaction = TRUE) {
check_bool(temporary)
if (!is.data.frame(df) && !inherits(df, "tbl_sql")) {
cli_abort("{.var df} must be a local dataframe or a remote tbl_sql")
}
name <- as_table_path(name, dest$con)
if (inherits(df, "tbl_sql") && same_src(df$src, dest)) {
out <- compute(df,
name = name,
temporary = temporary,
unique_indexes = unique_indexes,
indexes = indexes,
analyze = analyze,
...
)
} else {
# avoid S4 dispatch problem in dbSendPreparedQuery
df <- as.data.frame(collect(df))
name <- db_copy_to(dest$con, name, df,
overwrite = overwrite,
types = types,
temporary = temporary,
unique_indexes = unique_indexes,
indexes = indexes,
analyze = analyze,
in_transaction = in_transaction,
...
)
out <- tbl_src_dbi(dest, name, vars = names(df))
}
invisible(out)
}
#' @importFrom dplyr auto_copy
#' @export
auto_copy.tbl_sql <- function(x, y, copy = FALSE, ...) {
copy_to(x$src, as.data.frame(y), unique_table_name(), ...)
}
#' Use a local data frame in a dbplyr query
#'
#' This is an alternative to [copy_to()] that does not need write access and
#' is faster for small data.
#'
#' It writes the data directly in the SQL query via the `VALUES` clause.
#'
#' @seealso [copy_to()] to copy the data into a new database table.
#' @export
#' @param con A database connection.
#' @param df A local data frame. The data is written directly in the SQL query
#' so it should be small.
#' @param types A named character vector of SQL data types to use for the columns.
#' The data types are backend specific. For example for Postgres this could
#' be `c(id = "bigint", created_at = "timestamp", values = "integer[]")`.
#' If `NULL`, the default, the types are determined from `df`.
#' @return A `tbl_lazy`.
#'
#' @examples
#' df <- data.frame(x = 1:3, y = c("a", "b", "c"))
#' con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
#'
#' copy_inline(con, df)
#'
#' copy_inline(con, df) %>% dplyr::show_query()
copy_inline <- function(con, df, types = NULL) {
if (!inherits(df, "data.frame")) {
cli_abort("{.var df} needs to be a data.frame.")
}
if (ncol(df) == 0) {
cli_abort("{.var df} needs at least one column.")
}
if (!is_null(types)) {
check_character(types)
if (!setequal(colnames(df), names(types))) {
cli_abort("Names of {.arg df} and {.arg types} must be the same.")
}
}
# This workaround is needed because `tbl_sql()` applies `as.sql()` on `from`
subclass <- class(con)[[1]] # prefix added by dplyr::make_tbl
dplyr::make_tbl(
c(subclass, "sql", "lazy"),
src = src_dbi(con),
from = df,
lazy_query = lazy_values_query(df, types),
vars = colnames(df)
)
}
lazy_values_query <- function(df, types) {
lazy_query(
query_type = "values",
x = df,
col_types = types,
group_vars = character(),
order_vars = NULL,
frame = NULL
)
}
#' @export
sql_build.lazy_values_query <- function(op, con, ..., sql_options = NULL) {
class(op) <- c("values_query", "query")
op
}
#' @export
sql_render.values_query <- function(query,
con = query$src$con,
...,
sql_options = NULL,
subquery = FALSE,
lvl = 0) {
sql_values_subquery(con, query$x, types = query$col_types, lvl = lvl)
}
#' @export
flatten_query.values_query <- function(qry, query_list, con) {
querylist_reuse_query(qry, query_list, con)
}
#' @export
op_vars.lazy_values_query <- function(op) {
colnames(op$x)
}
sql_values_subquery <- function(con, df, types, lvl = 0, ...) {
check_dots_used()
UseMethod("sql_values_subquery")
}
#' @export
sql_values_subquery.DBIConnection <- function(con, df, types, lvl = 0, ...) {
sql_values_subquery_default(con, df, types = types, lvl = lvl, row = FALSE)
}
sql_values_subquery_default <- function(con, df, types, lvl, row) {
df <- values_prepare(con, df)
if (nrow(df) == 0L) {
return(sql_values_zero_rows(con, df, types, lvl))
}
# The query consists of two parts:
# 1) An outer select which converts the values to the correct types. This needs
# to use the translation of `as.<column type>(<column name>)` (e.g. `as.numeric(mpg)`)
# because some backends need a special translation for some types e.g. casting
# to logical/bool in MySQL
# `IF(<column name>, TRUE, FALSE)`
# This is done with the help of `sql_cast_dispatch()` via dispatch on the
# column type. The explicit cast is required so that joins work e.g. on date
# columns in Postgres.
# 2) A subquery which is the union of:
# a) a zero row table which is just required to name the columns. This is
# necessary as e.g. SQLite cannot name `VALUES`.
# b) `VALUES` clause
sim_data <- rep_named(colnames(df), list(NULL))
cols_clause <- escape(sim_data, con = con, parens = FALSE, collapse = NULL)
null_row_clauses <- list(
select = sql_clause_select(con, cols_clause),
where = sql_clause_where(sql("0 = 1"))
)
rows_clauses <- sql_values_clause(con, df, row = row)
rows_query <- sql_format_clauses(rows_clauses, lvl = lvl + 1, con = con)
subquery <- sql_query_union(
con,
x = sql_format_clauses(null_row_clauses, lvl + 1, con),
unions = list(table = as.character(rows_query), all = TRUE),
lvl = lvl + 1
)
sql_query_select(
con,
select = sql_values_cast_clauses(con, df, types, na = FALSE),
from = sql_query_wrap(con, subquery, name = "values_table", lvl = lvl),
lvl = lvl
)
}
sql_values_subquery_column_alias <- function(con, df, types, lvl, ...) {
df <- values_prepare(con, df)
if (nrow(df) == 0L) {
return(sql_values_zero_rows(con, df, types, lvl))
}
# The `SELECT` clause converts the values to the correct types. This needs
# to use the translation of `as.<column type>(<column name>)` (e.g. `as.numeric(mpg)`)
# because some backends need a special translation for some types e.g. casting
# to logical/bool in MySQL
# `IF(<column name>, TRUE, FALSE)`
# This is done with the help of `sql_cast_dispatch()` via dispatch on the
# column type. The explicit cast is required so that joins work e.g. on date
# columns in Postgres.
# The `FROM` clause is simply the `VALUES` clause with table and column alias
rows_clauses <- sql_values_clause(con, df, row = FALSE)
rows_query <- sql_format_clauses(rows_clauses, lvl = lvl + 1, con = con)
table_alias_sql <- sql(paste0("drvd(", escape(ident(colnames(df)), con = con), ")"))
if (grepl("\\n", rows_query)) {
rows_query <- sql(paste0("(\n", rows_query, "\n", indent_lvl(") AS ", lvl), table_alias_sql))
} else {
# indent is not perfect but okay
rows_query <- sql(paste0("(", rows_query, ") AS ", table_alias_sql))
}
sql_query_select(
con,
select = sql_values_cast_clauses(con, df, types, na = FALSE),
from = rows_query,
lvl = lvl
)
}
sql_values_subquery_union <- function(con, df, types, lvl, row, from = NULL) {
df <- values_prepare(con, df)
if (nrow(df) == 0L) {
return(sql_values_zero_rows(con, df, types, lvl, from))
}
# The query consists of two parts:
# 1) An outer select which converts the values to the correct types. This needs
# to use the translation of `as.<column type>(<column name>)` (e.g. `as.numeric(mpg)`)
# because some backends need a special translation for some types e.g. casting
# to logical/bool in MySQL
# `IF(<column name>, TRUE, FALSE)`
# This is done with the help of `sql_cast_dispatch()` via dispatch on the
# column type. The explicit cast is required so that joins work e.g. on date
# columns in Postgres.
# 2) A subquery which is the union of:
# a) a zero row table which is just required to name the columns. This is
# necessary as e.g. SQLite cannot name `VALUES`.
# b) `UNION ALL` of one row `SELECT` statements
sim_data <- rep_named(colnames(df), list(NULL))
cols_clause <- escape(sim_data, con = con, parens = FALSE, collapse = NULL)
clauses <- list(
select = sql_clause_select(con, cols_clause),
from = if (!is.null(from)) sql_clause_from(ident(from)),
where = sql_clause_where(sql("0 = 1"))
)
null_row_query <- sql_format_clauses(clauses, lvl + 1, con)
escaped_values <- purrr::map(df, escape, con = con, collapse = NULL, parens = FALSE)
rows <- rlang::exec(paste, !!!escaped_values, sep = ", ")
select_kw <- style_kw("SELECT ")
tables <- paste0(lvl_indent(lvl + 1), select_kw, rows)
if (!is_null(from)) {
from_kw <- style_kw("FROM ")
tables <- paste0(tables, " ", from_kw, from)
}
subquery <- sql_query_union(
con,
x = null_row_query,
unions = list(all = TRUE, table = tables),
lvl = lvl + 1
)
sql_query_select(
con,
select = sql_values_cast_clauses(con, df, types, na = FALSE),
from = sql_query_wrap(con, subquery, name = "values_table", lvl = lvl),
lvl = lvl
)
}
sql_values_clause <- function(con, df, row = FALSE) {
escaped_values <- purrr::map(df, escape, con = con, collapse = NULL, parens = FALSE)
rows <- rlang::exec(paste, !!!escaped_values, sep = ", ")
rows_sql <- sql(paste0(if (row) "ROW", "(", rows, ")"))
list(sql_clause("VALUES", rows_sql))
}
sql_values_zero_rows <- function(con, df, types, lvl, from = NULL) {
if (nrow(df) != 0L) {
cli_abort("{.arg df} does not have 0 rows", .internal = TRUE)
}
typed_cols <- sql_values_cast_clauses(con, df, types, na = TRUE)
clauses <- list(
select = sql_clause_select(con, typed_cols),
from = if (!is.null(from)) sql_clause_from(ident(from)),
where = sql_clause_where(sql("0 = 1"))
)
sql_format_clauses(clauses, lvl, con)
}
sql_values_cast_clauses <- function(con, df, types, na) {
if (is_null(types)) {
typed_cols <- purrr::map2_chr(
df, colnames(df),
~ {
val <- if (na) NA else ident(.y)
cast_expr <- call2(sql_cast_dispatch(.x), val)
translate_sql(!!cast_expr, con = con)
}
)
} else {
typed_cols <- purrr::imap_chr(
types,
~ {
val <- if (na) NA else ident(.y)
sql_expr(cast(!!val %as% !!sql(.x)), con = con)
}
)
}
sql_vector(typed_cols, parens = FALSE, collapse = NULL, con = con)
}
values_prepare <- function(con, df) {
UseMethod("values_prepare")
}
#' @export
values_prepare.DBIConnection <- function(con, df) {
df
}
# This
sql_cast_dispatch <- function(x) {
UseMethod("sql_cast_dispatch")
}
#' @export
sql_cast_dispatch.sql <- function(x) {
expr(as.character)
}
#' @export
sql_cast_dispatch.logical <- function(x) {
expr(as.logical)
}
#' @export
sql_cast_dispatch.integer <- function(x) {
expr(as.integer)
}
#' @export
sql_cast_dispatch.numeric <- function(x) {
expr(as.numeric)
}
#' @export
sql_cast_dispatch.character <- function(x) {
expr(as.character)
}
#' @export
sql_cast_dispatch.factor <- function(x) {
expr(as.character)
}
#' @export
sql_cast_dispatch.Date <- function(x) {
expr(as.Date)
}
#' @export
sql_cast_dispatch.POSIXct <- function(x) {
expr(as.POSIXct)
}
#' @export
sql_cast_dispatch.integer64 <- function(x) {
expr(as.integer64)
}
utils::globalVariables(c("as.integer64"))