forked from os-climate/ITR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathITR_UI.py
724 lines (661 loc) · 39.1 KB
/
ITR_UI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# Go to folder "examples" and run this app with `python ITR_UI.py` and
# visit http://127.0.0.1:8050/ in your web browser
import argparse
import sys
import pandas as pd
import numpy as np
import json
import os
import base64
import io
import dash
from dash import html
from dash import dcc
import dash_bootstrap_components as dbc # should be installed separately
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
import plotly.express as px
import plotly.graph_objects as go
import ITR
from ITR.data.data_warehouse import DataWarehouse
from ITR.portfolio_aggregation import PortfolioAggregationMethod
from ITR.temperature_score import TemperatureScore
from ITR.data.base_providers import BaseProviderProductionBenchmark, BaseProviderIntensityBenchmark
from ITR.data.template import TemplateProviderCompany
from ITR.interfaces import EScope, ETimeFrames, IEIBenchmarkScopes, IProductionBenchmarkScopes, ProjectionControls
# from ITR.configs import LoggingConfig
from ITR.data.osc_units import Q_
from pint import Quantity
from pint_pandas import PintType
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # LoggingConfig.FORMAT
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
# Initial calculations
logger.info("Start!")
examples_dir ='' #'examples'
data_dir="data"
data_json_units_dir="json-units"
root = os.path.abspath('')
# load company data
parser = argparse.ArgumentParser()
parser.add_argument('template', nargs='+', help='enter filename of XLSX data template')
parser.set_defaults(template="20220415 ITR Tool Sample Data.xlsx")
if len(sys.argv)>1:
print(sys.argv)
company_data=parser.parse_args(sys.argv).template[-1]
print(company_data)
else:
company_data="20220720 ITR Tool Sample Data.xlsx" # this file is provided initially
template_company_data = TemplateProviderCompany(excel_path=os.path.join(root, examples_dir, data_dir, company_data))
# load production benchmarks
benchmark_prod_json_file = "benchmark_production_OECM.json"
benchmark_prod_json = os.path.join(root, examples_dir, data_dir, data_json_units_dir, benchmark_prod_json_file)
with open(benchmark_prod_json) as json_file:
parsed_json = json.load(json_file)
prod_bms = IProductionBenchmarkScopes.parse_obj(parsed_json)
base_production_bm = BaseProviderProductionBenchmark(production_benchmarks=prod_bms)
logger.info('Load production benchmark from {}'.format(benchmark_prod_json_file))
# Emission intensities
benchmark_EI_OECM_file = "benchmark_EI_OECM.json"
benchmark_EI_TPI_15_file = "benchmark_EI_TPI_1_5_degrees.json"
benchmark_EI_TPI_file = "benchmark_EI_TPI_2_degrees.json"
benchmark_EI_TPI_below_2_file = "benchmark_EI_TPI_below_2_degrees.json"
# loading dummy portfolio
df_portfolio = pd.read_excel(os.path.join(root, examples_dir, data_dir, company_data), sheet_name="Portfolio")
companies = ITR.utils.dataframe_to_portfolio(df_portfolio)
logger.info('Load dummy portfolio from {}. You could upload your own portfolio using the template.'.format(company_data))
temperature_score = TemperatureScore(
time_frames = [ETimeFrames.LONG],
scopes=[EScope.S1S2],
aggregation_method=PortfolioAggregationMethod.WATS # Options for the aggregation method are WATS, TETS, AOTS, MOTS, EOTS, ECOTS, and ROTS
)
# load default intensity benchmarks
def recalculate_individual_itr(scenario):
if scenario == 'OECM':
benchmark_file = benchmark_EI_OECM_file
elif scenario == 'TPI_2_degrees':
benchmark_file = benchmark_EI_TPI_file
elif scenario == 'TPI_15_degrees':
benchmark_file = benchmark_EI_TPI_15_file
else:
benchmark_file = benchmark_EI_TPI_below_2_file
# load intensity benchmarks
benchmark_EI = os.path.join(root, examples_dir, data_dir, data_json_units_dir, benchmark_file)
with open(benchmark_EI) as json_file:
parsed_json = json.load(json_file)
EI_bm = BaseProviderIntensityBenchmark(EI_benchmarks=IEIBenchmarkScopes.parse_obj(parsed_json))
Warehouse = DataWarehouse(template_company_data, base_production_bm, EI_bm)
df = temperature_score.calculate(data_warehouse=Warehouse, portfolio=companies)
return df
initial_portfolio = recalculate_individual_itr('OECM')
amended_portfolio_global = initial_portfolio.copy()
filt_df = initial_portfolio.copy()
# matplotlib is integrated with Pint's units system: https://pint.readthedocs.io/en/0.18/plotting.html
# But not so plotly. This function attempts to dequantify all units and return the magnitudes in their natural base units.
def dequantify_plotly(px_func, df, **kwargs):
new_df = df.copy()
for col in ['x', 'y']:
s = df[kwargs[col]]
if isinstance(s.dtype, PintType):
new_df[kwargs[col]] = s.values.quantity.to_base_units().m
elif s.map(lambda x: isinstance(x, Quantity)).any():
item0 = s.values[0]
s = s.astype(f"pint[{item0.u}]")
new_df[kwargs[col]] = s.values.quantity.m
if 'hover_data' in kwargs:
for col in kwargs['hover_data']:
s = df[col]
if isinstance(s.dtype, PintType):
new_df[col] = s.values.quantity.to_base_units().m
elif s.map(lambda x: isinstance(x, Quantity)).any():
item0 = s.values[0]
s = s.astype(f"pint[{item0.u}]")
new_df[col] = s.values.quantity.m
return px_func (new_df, **kwargs)
# nice cheatsheet for managing layout via className attribute: https://hackerthemes.com/bootstrap-cheatsheet/
# Define app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], # theme should be written in CAPITAL letters; list of themes https://www.bootstrapcdn.com/bootswatch/
meta_tags=[{'name': 'viewport', # this thing makes layout responsible to mobile view
'content': 'width=device-width, initial-scale=1.0'}]
)
app.title = "ITR Tool" # this puts text to the browser tab
server = app.server
controls = dbc.Row( # always do in rows ...
[
dbc.Col( # ... and then split to columns
children=[
dbc.Row(
[
dbc.Col(
dbc.Label("\N{thermometer} Individual temperature score"),
width=9,
),
dbc.Col(
[
dbc.Button("\N{books}",id="hover-target2", color="link", n_clicks=0),
dbc.Popover(dbc.PopoverBody("Focus on companies from portfolio with specific temperature score"),id="hover2",target="hover-target2",trigger="hover"),
], width=2, align="center",
),
],
align="center",
),
dcc.RangeSlider(
id="temp-score",
min = 0, max = 4, value=[0,4],
step=0.5,
marks={i / 10: str(i / 10) for i in range(0, 40, 5)},
),
dbc.Row(
[
dbc.Col(
dbc.Label("\N{factory} Focus on a specific sector "),
width=9,
),
dbc.Col(
[
dbc.Button("\N{books}",id="hover-target3", color="link", n_clicks=0),
dbc.Popover(dbc.PopoverBody("Scope of sectors could be different for different emission scenario.\nScope of sectors covered by the tool is constantly growing."),id="hover3",target="hover-target3",trigger="hover"),
], width=2,
),
],
align="center",
),
dcc.Dropdown(id="sector-dropdown",
options=[{"label": i, "value": i} for i in initial_portfolio["sector"].unique()] + [{'label': 'All Sectors', 'value': 'all_values'}],
value = 'all_values',
clearable =False,
placeholder="Select a sector"),
dbc.Row(
[
dbc.Col(
dbc.Label("\N{globe with meridians} Focus on a specific region "),
width=9,
),
dbc.Col(
[
dbc.Button("\N{books}",id="hover-target4", color="link", n_clicks=0),
dbc.Popover(dbc.PopoverBody("Scope of countries could be different for different emission scenario"),id="hover4",target="hover-target4",trigger="hover"),
], width=2,
),
],
align="center",
),
dcc.Dropdown(id="region-dropdown",
options=[{"label": i if i != "Global" else "Other", "value": i} for i in initial_portfolio["region"].unique()] + [{'label': 'All Regions', 'value': 'all_values'}],
value = 'all_values',
clearable =False,
placeholder="Select a region"),
],
),
],
)
macro = dbc.Row(
[
dbc.Col(
children=[
dbc.Row( # Select Benchmark
[
dbc.Col(
dbc.Label("\N{bar chart} Select climate scenario "),
width=9,
),
dbc.Col(
[
dbc.Button("\N{books}",id="hover-target5", color="link", n_clicks=0),
dbc.Popover(dbc.PopoverBody("Climate scenario describes emission intensities projection for different regions and sectors"),id="hover5",target="hover-target5",trigger="hover"),
], width=2,
),
],
align="center",
),
dcc.Dropdown(id="scenario-dropdown",
options=[ # 16.05.2022: make this dynamic
{'label': 'OECM 1.5 degrees', 'value': 'OECM'},
{'label': 'TPI 1.5 degrees', 'value': 'TPI_15_degrees'},
{'label': 'TPI 2 degrees', 'value': 'TPI_2_degrees'},
{'label': 'TPI below 2 degrees', 'value': 'TPI_below_2_degrees'}
],
value='OECM',
clearable =False,
placeholder="Select emission scenario"),
html.Div(id='hidden-div', style={'display':'none'}),
html.Hr(), # small space from the top
dbc.Row( # Mean / Median projection
[
dbc.Col(
dbc.Label("\N{level slider} Select method for projection"),
width=9,
),
dbc.Col(
[
dbc.Button("\N{books}",id="hover-target6", color="link", n_clicks=0),
dbc.Popover(dbc.PopoverBody("Select method of averaging trend of emission intensities projections"),id="hover6",target="hover-target6",trigger="hover"),
], width=2,
),
],
align="center",
),
dcc.RadioItems(
id="projection-method",
options=[
{'label': 'Median', 'value': 'median'},
{'label': 'Mean', 'value': 'mean'},
],
value='median',
inputStyle={"margin-right": "10px","margin-left": "30px"},
inline=True,
),
html.Hr(), # small space from the top
dbc.Row( # Winzorization of scenarios
[
dbc.Col(
dbc.Label("\N{wrench} Select winsorization value cap range"),
width=9,
),
dbc.Col(
[
dbc.Button("\N{books}",id="hover-target8", color="link", n_clicks=0),
dbc.Popover(dbc.PopoverBody("Select which extreme datapoints of historical emission intensities you would like to exclude from calculations of projections"),id="hover8",target="hover-target8",trigger="hover"),
], width=2,
),
],
align="center",
),
dcc.RangeSlider(
id="scenarios-cutting",
min = 0, max = 100, value=[ProjectionControls.LOWER_PERCENTILE*100,ProjectionControls.UPPER_PERCENTILE*100],
step=10,
marks={i: str(i) for i in range(0, 100, 10)},
allowCross=False
),
],
),
],
)
# Define Layout
app.layout = dbc.Container( # always start with container
children=[
html.Hr(), # small space from the top
dbc.Row( # upload portfolio
[
dbc.Col( # upload OS-C logo
dbc.CardImg(
src="https://os-climate.org/wp-content/uploads/sites/138/2021/10/OSC-Logo.png",
className='align-self-center',# 'h-60 w-60 float-middle align-middle', # reducing size and alligning
bottom=False),
width = 2,
align="center",
),
dbc.Col(
[
html.H1(id="banner-title",children=[html.A("OS-Climate Portfolio Alignment Tool",href="https://github.com/plotly/dash-svm",style={"text-decoration": "none","color": "inherit"})]),
html.Div(children='Prototype tool for calculating the Implied Temperature Rise of investor portfolio in the steel and electric utilities sectors \N{deciduous tree}'),
],
width = 8,
),
dbc.Col([
dbc.Spinner([html.H1(id="dummy-output-info",style={'color': 'white'})],color="primary",spinner_style={"width": "3rem", "height": "3rem"}), # Spinner implementations
],
width=1,
),
],
justify='between', # for this to work you need some space left (in total there 12 columns)
align = 'center',
),
html.Hr(),
dbc.Row(
[
dbc.Col(
[ # filters pane
dbc.Card(
dbc.CardBody(
[
dbc.Row(
[ # Row with key figures
dbc.Col(html.H5("Filters", className="pf-filter")), # PF score
dbc.Col(
html.Div(
dbc.Button("Reset filters",
id="reset-filters-but",
outline=True, color="dark",size="sm",className="me-md-2"
),
className="d-grid gap-2 d-md-flex justify-content-md-end"
)
),
]
),
html.P("Select part of your portfolio", className="text-black-50"),
controls,
]
)
),
html.Br(),
dbc.Card(
dbc.CardBody(
[
html.H5("Scenario assumptions", className="macro-filters"),
html.P("Here you could adjust basic assumptions of calculations", className="text-black-50"),
macro,
]
)
),
],
width=3,
),
dbc.Col(
[ # main pane
dbc.Card(
dbc.CardBody([
dbc.Row(# Row with key figures
[
dbc.Col( # PF score
dbc.Card(dbc.CardBody(
[
html.H1(id="output-info"),
html.Div('Portfolio-level temperature rating of selected companies', style={'color': 'black', 'fontSize': 16}),
html.Div('in delta degree Celcius', style={'color': 'grey', 'fontSize': 10}),
]
)
),
),
dbc.Col( # Portfolio EVIC
dbc.Card(dbc.CardBody(
[
html.H1(id="evic-info"),
html.Div('Enterprise Value incl. Cash of selected portfolio', style={'color': 'black', 'fontSize': 16}),
html.Div('in billions of template curr', style={'color': 'grey', 'fontSize': 10}),
]
)
),
),
dbc.Col( # Portfolio notional
dbc.Card(dbc.CardBody(
[
html.H1(id="pf-info"),
html.Div('Total Notional of a selected portfolio', style={'color': 'black', 'fontSize': 16}),
html.Div('in millions of template curr', style={'color': 'grey', 'fontSize': 10}),
]
)
),
),
dbc.Col( # Number of companies
dbc.Card(dbc.CardBody(
[
html.H1(id="comp-info"),
html.Div('Number of companies in the selected portfolio', style={'color': 'black', 'fontSize': 16}),
html.Div('# of companies', style={'color': 'grey', 'fontSize': 10}),
]
)
),
),
],
),
dbc.Row(# row with 2 graphs
[
dbc.Col(dcc.Graph(id="graph-2"),width=8), # big bubble graph
dbc.Col(dcc.Graph(id="graph-6"),), # covered graph
],
),
dbc.Row(# row with 2 graphs
[
dbc.Col(dcc.Graph(id="graph-3")),
dbc.Col(dcc.Graph(id="graph-4")),
]
),
dbc.Row(# row with 1 bar graph
[
dbc.Col(dcc.Graph(id="graph-5")),
]
),
])
),
html.Br(),
],
width=9,
),
]
),
dbc.Row( # Table
dbc.Col(
dbc.Card(
dbc.CardBody(
[
dbc.Row(
[
dbc.Col(
html.H5("Table below contains details about the members of the selected portfolio"),
width=10,
),
dbc.Col(
html.Div(
[
dbc.Button("Export table to spreadsheet",
id="export-to-excel",
size="sm",className="me-md-2"
),
dcc.Download(id="download-dataframe-xlsx"),
],
className="d-grid gap-2 d-md-flex justify-content-md-end"
),
width=2,
),
],
align="center",
),
html.Br(),
html.Div(id='container-button-basic'),
]
),
),
)
)
],
style={"max-width": "1500px"},
)
@app.callback(
[
Output("graph-2", "figure"),
Output("graph-6", "figure"),
Output("graph-3", "figure"),
Output("graph-4", "figure"),
Output("graph-5", "figure"),
Output('dummy-output-info','children'), # fake for spinner
Output('output-info','children'), # portfolio score
Output('output-info','style'), # conditional color
Output('evic-info','children'), # portfolio evic
Output('pf-info','children'), # portfolio notional
Output('comp-info','children'), # num of companies
Output('container-button-basic', 'children'), # Table
],
[
Input("temp-score", "value"),
Input("sector-dropdown", "value"),
Input("region-dropdown", "value"),
Input("scenario-dropdown", "value"),
Input('projection-method','value'),
Input("scenarios-cutting", "value"), # winzorization slide
],
)
def update_graph(
te_sc,
sec, reg,
scenario,
proj_meth,
winz,
):
global amended_portfolio_global, initial_portfolio, filt_df, temperature_score, companies, company_data, template_company_data, base_production_bm
changed_id = [p['prop_id'] for p in dash.callback_context.triggered][0] # to catch which widgets were pressed
if 'scenarios-cutting' or 'projection-method' in changed_id: # if winzorization params were changed
if proj_meth == 'median':
template_company_data.projection_controls.TREND_CALC_METHOD = staticmethod(pd.DataFrame.median)
else:
template_company_data.projection_controls.TREND_CALC_METHOD = staticmethod(pd.DataFrame.mean)
template_company_data.projection_controls.LOWER_PERCENTILE = winz[0]/100
template_company_data.projection_controls.UPPER_PERCENTILE = winz[1]/100
template_company_data = TemplateProviderCompany(excel_path=os.path.join(root, examples_dir, data_dir, company_data))
amended_portfolio_global = recalculate_individual_itr(scenario) # we need to recalculate temperature score as we changed th
temp_score_mask = (amended_portfolio_global.temperature_score >= Q_(te_sc[0],'delta_degC')) & (amended_portfolio_global.temperature_score <= Q_(te_sc[1],'delta_degC'))
# Dropdown filters
if sec == 'all_values':
sec_mask = (amended_portfolio_global.sector != 'dummy') # select all
else:
sec_mask = amended_portfolio_global.sector == sec
if reg == 'all_values':
reg_mask = (amended_portfolio_global.region != 'dummy') # select all
else:
reg_mask = (amended_portfolio_global.region == reg)
filt_df = amended_portfolio_global.loc[temp_score_mask & sec_mask & reg_mask] # filtering
if len(filt_df) == 0: # if after filtering the dataframe is empty
raise PreventUpdate
aggregated_scores = temperature_score.aggregate_scores(filt_df) # calc temp score for companies left in pf
# Scatter plot
fig1 = dequantify_plotly (px.scatter, filt_df, x="cumulative_target", y="cumulative_budget",
size="investment_value",
color = "sector", labels={"color": "Sector"},
hover_data=["company_name", "investment_value", "temperature_score"],
title="Overview of portfolio")
fig1.update_layout({'legend_title_text': '','transition_duration':500})
fig1.update_layout(legend=dict(orientation = "h",yanchor="bottom",y=1,xanchor="center",x=0.5))
# Covered companies analysis
coverage=filt_df[['company_id','ghg_s1s2','cumulative_target']].copy()
zeroE = Q_(0, 't CO2')
coverage['coverage_category'] = np.where(coverage['ghg_s1s2'].isnull(),
np.where(coverage['cumulative_target']==zeroE, "Not Covered", "Covered only<Br>by target"),
np.where((coverage['ghg_s1s2'] >zeroE) & (coverage['cumulative_target']==zeroE),
"Covered only<Br>by emissions",
"Covered by<Br>emissions and targets"))
dfg=coverage.groupby('coverage_category').count().reset_index()
dfg['portfolio']='Portfolio'
fig5 = dequantify_plotly (px.bar, dfg, x='portfolio',y="company_id", color="coverage_category",text='company_id',title="Coverage of companies in portfolio")
fig5.update_xaxes(visible=False) # hide axis
fig5.update_yaxes(visible=False) # hide axis
fig5.update_layout({'legend_title_text': '','transition_duration':500, 'plot_bgcolor':'white'})
fig5.update_layout(legend=dict(yanchor="middle",y=0.5,xanchor="left",x=1)) # location of legend
# Heatmap
trace = go.Heatmap(
x = filt_df.sector,
y = filt_df.region,
z = filt_df.temperature_score.map(lambda x: x.m),
type = 'heatmap',
colorscale = 'Temps',
)
data = [trace]
heatmap_fig = go.Figure(data = data)
heatmap_fig.update_layout(title = "Industry vs Region ratings")
# visualizing worst performers
df_high_score = filt_df.sort_values('temperature_score',ascending = False).groupby('sector').head(4) # keeping only companies with highest score for the chart
df_high_score['company_name'] = df_high_score['company_name'].str.split(' ').str[0] # taking just 1st word for the bar chart
high_score_fig = dequantify_plotly (px.bar, df_high_score,
x="company_name",
y="temperature_score", text ="temperature_score",
color="sector", title="Highest temperature scores by company")
high_score_fig.update_traces(textposition='inside', textangle=0)
high_score_fig.update_yaxes(title_text='Temperature score', range = [1,4])
high_score_fig.update_layout({'legend_title_text': '','transition_duration':500})
high_score_fig.update_layout(xaxis_title = None,legend=dict(orientation = "h",yanchor="bottom",y=1,xanchor="center",x=0.5))
# Calculate different weighting methods
def agg_score(agg_method):
temperature_score = TemperatureScore(time_frames = [ETimeFrames.LONG],
scopes=[EScope.S1S2],
aggregation_method=agg_method) # Options for the aggregation method are WATS, TETS, AOTS, MOTS, EOTS, ECOTS, and ROTS
aggregated_scores = temperature_score.aggregate_scores(filt_df)
return [agg_method.value,aggregated_scores.long.S1S2.all.score]
agg_temp_scores = [agg_score(i) for i in PortfolioAggregationMethod]
methods, scores = list(map(list, zip(*agg_temp_scores)))
df_temp_score = pd.DataFrame(data={0:pd.Series(methods,dtype='string'), 1:pd.Series(scores, dtype='pint[delta_degC]')})
df_temp_score[1]=pd.to_numeric(df_temp_score[1].astype('pint[delta_degC]').values.quantity.m).round(2) # rounding score
# Separate column for names on Bar chart
# Highlight WATS and TETS
Weight_Dict = {'WATS': 'Investment<Br>weighted', # <Br> is needed to wrap x-axis label
'TETS': 'Total emissions<Br>weighted',
'EOTS': "Enterprise Value<Br>weighted",
'ECOTS': "Enterprise Value<Br>+ Cash weighted",
'AOTS': "Total Assets<Br>weighted",
'ROTS': "Revenues<Br>weigted",
'MOTS': 'Market Cap<Br>weighted'}
df_temp_score['Weight_method'] = df_temp_score[0].map(Weight_Dict) # Mapping code to text
# Creating barchart, plotting values of column `1`
port_score_diff_methods_fig = dequantify_plotly (px.bar, df_temp_score, x='Weight_method', y=1, text=1,title = "Score by weighting scheme <br><sup>Assess the influence of weighting schemes on scores</sup>")
port_score_diff_methods_fig.update_traces(textposition='inside', textangle=0)
port_score_diff_methods_fig.update_yaxes(title_text='Temperature score', range = [0.5,3])
port_score_diff_methods_fig.update_xaxes(title_text=None, tickangle=0)
port_score_diff_methods_fig.add_annotation(x=0.5, y=2.6,text="Main methodologies",showarrow=False)
port_score_diff_methods_fig.add_shape(
dict(type="rect", x0=-0.45, x1=1.5, y0=0, y1=2.7, line_dash="dot",line_color="LightSeaGreen"),
row="all",
col="all",
)
port_score_diff_methods_fig.add_hline(y=2, line_dash="dot",line_color="red",annotation_text="Critical value") # horizontal line
port_score_diff_methods_fig.update_layout(transition_duration=500)
# input for the dash table
df_for_output_table=filt_df[['company_name', 'company_id','region','sector','cumulative_budget','investment_value','trajectory_score', 'target_score','temperature_score']].copy()
df_for_output_table['temperature_score']=df_for_output_table['temperature_score'].astype('pint[delta_degC]').values.quantity.m # f"{q:.2f~#P}"
df_for_output_table['trajectory_score']=pd.to_numeric(df_for_output_table['trajectory_score'].astype('pint[delta_degC]').values.quantity.m).round(2)
df_for_output_table['target_score']=pd.to_numeric(df_for_output_table['target_score'].astype('pint[delta_degC]').values.quantity.m).round(2)
df_for_output_table['cumulative_budget'] = pd.to_numeric(df_for_output_table['cumulative_budget'].astype('pint[Mt CO2]').values.quantity.m).round(2)
df_for_output_table['investment_value'] = df_for_output_table['investment_value'].apply(lambda x: "${:,.1f} Mn".format((x/1000000))) # formating column
df_for_output_table.rename(columns={'company_name':'Name', 'company_id':'ISIN','region':'Region','sector':'Industry','cumulative_budget':'Emissions budget','investment_value':'Notional','trajectory_score':'Historical emissions score', 'target_score':'Target score','temperature_score':'Weighted temperature score'}, inplace=True)
return (
fig1, fig5,
heatmap_fig, high_score_fig,
port_score_diff_methods_fig,
"{:.2f}".format(aggregated_scores.long.S1S2.all.score.m), # fake for spinner
"{:.2f}".format(aggregated_scores.long.S1S2.all.score.m), # portfolio score
{'color': 'ForestGreen'} if aggregated_scores.long.S1S2.all.score.m < 2 else {'color': 'Red'}, # conditional color
str(round((filt_df.company_ev_plus_cash.sum())/10**9,0)), # sum of total EVIC for companies in portfolio
str(round((filt_df.investment_value.sum())/10**6,1)), # portfolio notional
str(len(filt_df)), # num of companies
dbc.Table.from_dataframe(df_for_output_table,
striped=True,
bordered=True,
hover=True,
responsive=True,
),
)
@app.callback( # export table to spreadsheet
Output("download-dataframe-xlsx", "data"),
Input('export-to-excel', 'n_clicks'),
prevent_initial_call=True,
)
def download_xlsx(n_clicks):
return dcc.send_data_frame(filt_df.to_excel, "ITR_calculations.xlsx", sheet_name="ITR_calculations")
@app.callback( # reseting dropdowns
[
Output("temp-score", "value"),
Output("sector-dropdown", "value"),
Output("sector-dropdown", "options"), # update sector dropdown options as it could be different depending on the selected scenario
Output("region-dropdown", "value"),
Output("region-dropdown", "options"), # update region dropdown options as it could be different depending on the selected scenario
Output("projection-method", "value"),
Output("scenarios-cutting", "value"),
],
[
Input('reset-filters-but', 'n_clicks'),
Input("scenario-dropdown", "value")
]
)
def reset_filters(n_clicks_reset, scenario):
changed_id = [p['prop_id'] for p in dash.callback_context.triggered][0] # to catch which widgets were pressed
if n_clicks_reset is None and 'scenario-dropdown' not in changed_id:
raise PreventUpdate
ProjectionControls.TREND_CALC_METHOD=staticmethod(pd.DataFrame.median)
ProjectionControls.LOWER_PERCENTILE = 0.1
ProjectionControls.UPPER_PERCENTILE = 0.9
template_company_data = TemplateProviderCompany(excel_path=os.path.join(root, examples_dir, data_dir, company_data))
amended_portfolio_global = recalculate_individual_itr(scenario)
initial_portfolio = amended_portfolio_global
return ( # if button is clicked, reset filters
[0,4],
'all_values',
[{"label": i, "value": i} for i in amended_portfolio_global["sector"].unique()] + [{'label': 'All Sectors', 'value': 'all_values'}],
'all_values',
[{"label": i if i != "Global" else "Other", "value": i} for i in amended_portfolio_global["region"].unique()] + [{'label': 'All Regions', 'value': 'all_values'}],
'median',
[ProjectionControls.LOWER_PERCENTILE*100,ProjectionControls.UPPER_PERCENTILE*100],
)
if __name__ == "__main__":
app.run_server(debug=True)