Charger 3 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Stefan Nikolic
- Date : nov 2020.
- Type : I2C type
This example demonstrates the utilization of Charger 3 Click.
- MikroSDK.Board
- MikroSDK.Log
- Click.Charger3
charger3_cfg_setup
Config Object Initialization function.
void charger3_cfg_setup ( charger3_cfg_t *cfg );
charger3_init
Initialization function.
err_t charger3_init ( charger3_t *ctx, charger3_cfg_t *cfg );
charger3_default_cfg
Click Default Configuration function.
void charger3_default_cfg ( charger3_t *ctx );
charger3_enable_write
Charger 3 enable write function.
void charger3_enable_write ( charger3_t *ctx );
charger3_set_current
Charger 3 set current function.
uint8_t charger3_set_current ( charger3_t *ctx, float curr_value );
charger3_calc_digipot_res
Charger 3 calculate digipot resistance function.
float charger3_calc_digipot_res ( charger3_t *ctx );
The application init sets up the UART LOG and I2C communication drivers. The default configuration disables write protection and sets the operation mode to charging.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
charger3_cfg_t charger3_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
charger3_cfg_setup( &charger3_cfg );
CHARGER3_MAP_MIKROBUS( charger3_cfg, MIKROBUS_1 );
err_t init_flag = charger3_init( &charger3, &charger3_cfg );
if ( init_flag == I2C_MASTER_ERROR ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
Delay_ms ( 100 );
charger3_default_cfg ( &charger3 );
log_info( &logger, " Application Task " );
log_printf( &logger, " ------------------------------------\r\n" );
Delay_ms ( 100 );
}
Task consists of two operations. First, the desired battery charging current is set by the user. Since setting the current doesn't implicitly reveals the resistance, the value of AD5175 digipot is directly read from the RDAC register, calculated and displayed on the uart log.
void application_task ( void )
{
float result;
charger3_set_current( &charger3, 0.4 );
Delay_ms ( 1000 );
result = charger3_calc_digipot_res( &charger3 );
log_printf( &logger, " Digipot res value: %.2f ohm\r\n", result );
log_printf( &logger, " ------------------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
While the resistance of the AD5175 can be directly set and read, the total resistance value on the PROG pin should be accounted for ( this means an additional 1kohm in series ) setting of the battery charging current.
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.