Description
使用MTTS80运行测试代码无法完成测试,观察过进程显存占用也仅有53M,整体显存占用约1.6G,观察到有以下报错;但如果能在程序中每次数据加载到musa中,则可以正常运行
基本信息
- 显卡类型: MTT S80
- 驱动版本: 2.7.0-rc0717
- container toolkit 版本: 1.9.0-1
- torch_on_musa版本:docker镜像registry.mthreads.com/mcconline/musa-pytorch-release-public:rc3.0.1-v1.2.1-S80-py310
内核报错
[24078.925037] MTGPU:(Error): 56377: PID 1747 experienced error Guilty Lockup (0x1) caller[CheckFWCCB CTX Reset Noticication] [188]
[24082.310090] MTGPU:(Error): 56377: PID 1747 experienced error Guilty Lockup (0x1) caller[CheckFWCCB CTX Reset Noticication] [188]
[24082.376608] MTGPU:(Error): 56377: PID 1747 experienced error Guilty Lockup (0x1) caller[CheckFWCCB CTX Reset Noticication] [188]
[24082.378837] MTGPU:(Error): 56377: PID 115094 experienced error Innocent Lockup (0x2) caller[CheckFWCCB CTX Reset Noticication] [188]
[24082.378858] MTGPU:(Error): 56377: PID 1747 experienced error Innocent Lockup (0x2) caller[CheckFWCCB CTX Reset Noticication] [188]
运行时报错
Traceback (most recent call last):
File "/img/Ai-Learn-master/深度学习-PyTorch框架/PyTorch框架实战/第四章:图像识别核心模块实战解读/test.py", line 71, in
loss = criterion(outputs, labels.to(device))
File "/opt/conda/envs/py310/lib/python3.10/site-packages/torch_musa/core/tensor_attrs.py", line 41, in _to
return self.orig_to(*args, **kwargs)
RuntimeError: MUSA error: unknown error
import sys
import torch
import torch_musa
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
## 2. build network
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
if __name__ == "__main__":
## 1. prepare dataset
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 5
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
device = torch.device("musa")
net = Net().to(device)
## 3. define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
## 4. train
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
# torch_musa.empty_cache()
size = 0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# torch_musa.empty_cache()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
size += sys.getsizeof(inputs)
inputs = inputs.to(device)
outputs = net(inputs)
loss = criterion(outputs, labels.to(device))
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 200 == 199 :
print("data size is ", size)
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
print('Finished Training')
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
net.load_state_dict(torch.load(PATH))
## 5. test
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
# torch_musa.empty_cache()
images, labels = data
# calculate outputs by running images through the network
outputs = net(images.to(device))
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels.to(device)).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')