-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvad.py
846 lines (774 loc) · 36.2 KB
/
vad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
# pylint: disable=C0103,E1101
import os
import sys
import datetime as dt
import pytz
import numpy as np
import numpy.ma as ma
import netCDF4
import matplotlib.pyplot as plt
from typing import Tuple, List
import json
import Lidar_functions
import tools
from ppi import PPI
class VAD:
"""
This is a class created for VAD data
"""
@staticmethod
def xyz(ranges: np.ma.MaskedArray, el: np.ma.MaskedArray,
az: np.ma.MaskedArray) -> Tuple[np.ma.MaskedArray,
np.ma.MaskedArray,
np.ma.MaskedArray]:
""" Calculate x, y, and z coordinates from range, elevation, and azimuth
"""
# [None,:] / [:, None] syntax creates 2d array from 1d range and
# azimuth
x = (ranges[None, :] * np.cos(np.radians(el))
* np.sin(np.radians(az[:, None])))
y = (ranges[None, :] * np.cos(np.radians(el))
* np.cos(np.radians(az[:, None])))
z = ranges * np.sin(np.radians(el))
return (x, y, z)
@staticmethod
def non_nan_idxs(vr: np.ma.MaskedArray, i: int) -> np.ma.MaskedArray:
""" This variable is used to index azimuths, but I'm not really sure why
"""
return np.argwhere(~np.isnan(vr[:, i])).flatten()
@staticmethod
def calc_A(el: np.ma.MaskedArray, az: np.ma.MaskedArray,
idxs: np.ndarray) -> np.ndarray:
""" Calculate contents of A matrix """
A11 = ((np.cos(np.deg2rad(el))**2)
* np.sum(np.sin(np.deg2rad(az[idxs]))**2))
A12 = ((np.cos(np.deg2rad(el))**2)
* np.sum(np.sin(np.deg2rad(az[idxs]))
* np.cos(np.deg2rad(az[idxs]))))
A13 = ((np.cos(np.deg2rad(el))*np.sin(np.deg2rad(el)))
* np.sum(np.sin(np.deg2rad(az[idxs]))))
A22 = ((np.cos(np.deg2rad(el))**2)
* np.sum(np.cos(np.deg2rad(az[idxs]))**2))
A23 = ((np.cos(np.deg2rad(el))*np.sin(np.deg2rad(el)))
* np.sum(np.cos(np.deg2rad(az[idxs]))))
A33 = len(az[idxs]) * (np.sin(np.deg2rad(el))**2)
A = ma.array([[A11, A12, A13], [A12, A22, A23], [A13, A23, A33]])
return A
@staticmethod
def nan_if_masked(barray: list) -> list:
""" Not currently used, but leaving for reference """
return [b if not np.ma.is_masked(b) else np.nan for b in barray]
@staticmethod
def calc_b(el: np.ma.MaskedArray, az: np.ma.MaskedArray,
vr: np.ma.MaskedArray, idxs: np.ndarray, i: int) -> np.ndarray:
""" Calculate contents of b matrix """
# If all of the vr[idxs, i] array is masked, then b1, b2, and b3 will
# be masked, and the np.array() creation will report a warning about
# converting a masked element to nan. The best way I could figure out
# to avoid that warning was to explicitly convert a masked result.
b1 = np.cos(np.deg2rad(el)) * np.sum(vr[idxs, i] *
np.sin(np.deg2rad(az[idxs])))
b2 = np.cos(np.deg2rad(el)) * np.sum(vr[idxs, i] *
np.cos(np.deg2rad(az[idxs])))
b3 = np.sin(np.deg2rad(el)) * np.sum(vr[idxs, i])
# now using ma arrays in VAD, so no need to convert to np arrays w/ nan
# b = np.array(VAD.nan_if_masked([b1, b2, b3]))
b = ma.array([b1, b2, b3])
return b
def __init__(self, ppi: PPI, u: np.ndarray, v: np.ndarray, w: np.ndarray,
speed: np.ndarray, wdir: np.ndarray, du: np.ndarray,
dv: np.ndarray, dw: np.ndarray, nbeams_used: np.ndarray,
z: np.ndarray, residual: np.ndarray, correlation: np.ndarray):
self.u = ma.masked_invalid(u)
self.v = ma.masked_invalid(v)
self.w = ma.masked_invalid(w)
self.speed = ma.masked_invalid(speed)
self.wdir = ma.masked_invalid(wdir)
self.du = ma.masked_invalid(du)
self.dv = ma.masked_invalid(dv)
self.dw = ma.masked_invalid(dw)
self.nbeams_used = ma.masked_invalid(nbeams_used)
self.z = ma.masked_invalid(z)
self.residual = ma.masked_invalid(residual)
self.correlation = ma.masked_invalid(correlation)
self.stime = ppi.starttime
self.etime = ppi.endtime
self.el = ppi.elevation
self.nbeams = len(ppi.azimuth)
self.alt = ppi.alt
self.lat = ppi.lat
self.lon = ppi.lon
self.mean_cnr = ppi.mean_cnr()
@classmethod
def calculate_ARM_VAD(cls, ppi: PPI, missing=None):
"""
This function calculates VAD wind profiles using the technique shown in
Newsom et al. (2019). This function calculates VAD output for a single
PPI scan.
vr: 2d array (azimuth x range)
ranges: 1d array
el: scalar
az: 1d array
"""
# remove missing radial vel data
if missing is not None:
ppi.vr[ppi.vr == missing] = np.nan
# calculate XYZ coordinates of data
x, y, z = VAD.xyz(ppi.ranges, ppi.elevation, ppi.azimuth)
u = np.ones(len(ppi.ranges))*np.nan
v = np.ones(len(ppi.ranges))*np.nan
w = np.ones(len(ppi.ranges))*np.nan
du = np.ones(len(ppi.ranges))*np.nan
dv = np.ones(len(ppi.ranges))*np.nan
dw = np.ones(len(ppi.ranges))*np.nan
nbeams_used = np.ones(len(ppi.ranges))*np.nan
for i in range(len(ppi.ranges)):
idxs = VAD.non_nan_idxs(ppi.vr, i)
nbeams_used[i] = len(idxs)
# need at least 25% of the azimuth radial velocities available
if nbeams_used[i] <= len(ppi.azimuth)/4 or np.isnan(nbeams_used[i]):
continue
A = VAD.calc_A(ppi.elevation, ppi.azimuth, idxs)
invA = np.linalg.inv(A)
du[i] = np.sqrt(invA[0, 0])
dv[i] = np.sqrt(invA[1, 1])
dw[i] = np.sqrt(invA[2, 2])
b = VAD.calc_b(ppi.elevation, ppi.azimuth, ppi.vr, idxs, i)
temp = invA.dot(b)
u[i] = temp[0]
v[i] = temp[1]
w[i] = temp[2]
# calculate derived products
speed, wdir = tools.wspd_wdir_from_uv(u, v)
residual = np.sqrt(np.nanmean(((((u*x)+(v*y)+((w*z)
[None, :]))/np.sqrt(x**2+y**2+z**2))-ppi.vr)**2,
axis=0))
u_dot_r = ((u*x)+(v*y)+((w*z)[None, :]))/np.sqrt(x**2+y**2+z**2)
mean_u_dot_r = np.nanmean(((u*x)+(v*y)+((w*z)[None, :])) /
np.sqrt(x**2+y**2+z**2), axis=0)
mean_vr = np.nanmean(ppi.vr, axis=0)
correlation = (np.nanmean((u_dot_r-mean_u_dot_r)*(ppi.vr-mean_vr),
axis=0) /
(np.sqrt(np.nanmean((u_dot_r-mean_u_dot_r)**2, axis=0))
* np.sqrt(np.nanmean((ppi.vr-mean_vr)**2, axis=0))))
return cls(ppi, u, v, w, speed, wdir, du, dv, dw, nbeams_used,
z, residual, correlation)
def plot_(self, filename: str, plot_time: int = None, title: str = None):
"""
This function will plot wind profiles from the VAD object
"""
if plot_time is None:
plot_time = len(self.time) - 1
start = 0
else:
start = plot_time
for i in range(start, plot_time+1):
plt.figure(figsize=(12, 8))
ax = plt.subplot(141)
plt.plot(self.speed[i], self.z)
ax.set_xlim(0, 30)
ax.set_ylim([0, np.max(self.z)])
ax.set_xlabel('Wind Speed [m/s]')
ax.set_ylabel('Height [m]')
ax = plt.subplot(142)
plt.plot(self.wdir[i], self.z)
ax.set_xlim([0, 360])
ax.set_ylim([0, np.max(self.z)])
ax.set_xlabel('Wind Direction')
ax = plt.subplot(143)
plt.plot(self.w[i], self.z)
ax.set_xlim(-5, 5)
ax.set_ylim([0, np.max(self.z)])
ax.set_xlabel('Vertical Velocity [m/s]')
ax = plt.subplot(144)
plt.plot(self.residual[i], self.z)
ax.set_xlim(0, 10)
ax.set_ylim([0, np.max(self.z)])
ax.set_xlabel('Residual')
if title is not None:
plt.title(title)
plt.tight_layout()
if (start == 0) and (len(self.time) > 1):
if os.path.isdir(filename):
plt.savefig(filename + str(self.time[i]))
else:
os.mkdir(filename)
plt.savefig(filename + str(self.time[i]))
else:
plt.savefig(filename)
plt.close()
def plot_comp(self, altitude: float, ws: np.ndarray, wd: np.ndarray,
w: np.ndarray, z: np.ndarray, wprof_alt: float,
filename: str, plot_time: int = None, title: str = None):
"""
This function will plot wind profiles from the VAD object and
Comparison to other ws,wd,w,z
"""
if plot_time is None:
plot_time = len(self.time) - 1
start = 0
else:
start = plot_time
for i in range(start, plot_time+1):
plt.figure(figsize=(12, 8))
ax = plt.subplot(141)
plt.plot(self.speed[i], self.z+altitude, label='Lidar VAD')
if len(ws) > 0:
plt.plot(ws, z+wprof_alt, color='r', label='Wind Profiler')
plt.legend(loc='upper right')
ax.set_xlim(0, 30)
ax.set_ylim([0, 3000])
ax.set_xlabel('Wind Speed [m/s]')
ax.set_ylabel('Height [m]')
ax = plt.subplot(142)
plt.plot(self.wdir[i], self.z+altitude, label='Lidar VAD')
if len(wd) > 0:
plt.plot(wd, z+wprof_alt, color='r', label='Wind Profiler')
plt.legend(loc='upper right')
ax.set_xlim([0, 360])
ax.set_ylim([0, 3000])
ax.set_xlabel('Wind Direction')
ax = plt.subplot(143)
plt.plot(self.w[i], self.z+altitude, label='Lidar VAD')
if len(w) > 0:
plt.plot(w, z+wprof_alt, color='r', label='Wind Profiler')
plt.legend(loc='upper right')
ax.set_xlim(-5, 5)
ax.set_ylim([0, 3000])
ax.set_xlabel('Vertical Velocity [m/s]')
ax = plt.subplot(144)
plt.plot(self.residual[i], self.z+altitude)
ax.set_xlim(0, 10)
ax.set_ylim([0, 3000])
ax.set_xlabel('Residual')
if title is not None:
plt.title(title)
plt.tight_layout()
if (start == 0) and (len(self.time) > 1):
if os.path.isdir(filename):
plt.savefig(filename + str(self.time[i]))
else:
os.mkdir(filename)
plt.savefig(filename + str(self.time[i]))
else:
plt.savefig(filename)
plt.close()
def to_ARM_nc(self, file_path: str, min_cnr: float = -22):
"""
Create VAD output in ARM netCDF format
"""
# really a single VAD should have the same netCDF representation as a
# VADSet with one vad in it, so use that code to generate this netCDF
vs = VADSet.from_VADs([self], min_cnr)
vs.to_ARM_netcdf(file_path)
class VADSet:
""" Class to hold data from a series of VAD calculations """
@staticmethod
def missing_val_if_nan(val: float, missing_val: float = -9999.0) -> float:
""" netCDF4 library automatically sets nans to missing in writing to
array variables, but not scalars. """
if val is None or np.isnan(val):
return missing_val
return val
def __init__(self, mean_cnr: np.ndarray, min_cnr: int,
alt: np.ma.MaskedArray, lat: np.ma.MaskedArray,
lon: np.ma.MaskedArray, height: np.ma.MaskedArray,
stime: list, etime: list, el: list, nbeams: list,
u: np.ndarray, du: np.ndarray, v: np.ndarray,
dv: np.ndarray, w: np.ndarray, dw: np.ndarray,
nbeams_used: np.ndarray, speed: np.ndarray,
wdir: np.ndarray, residual: np.ndarray,
correlation: np.ndarray):
self.mean_cnr = mean_cnr
self.min_cnr = min_cnr
self.alt = alt
self.lat = lat
self.lon = lon
self.height = height
self.stime = stime
self.etime = etime
self.el = el
self.nbeams = nbeams
self.u = u
self.v = v
self.w = w
self.du = du
self.dv = dv
self.dw = dw
self.nbeams_used = nbeams_used
self.speed = speed
self.wdir = wdir
self.residual = residual
self.correlation = correlation
# use load_thresholds to add thresholds dict
self.thresholds = None
@classmethod
def from_VADs(cls, vads: List[VAD], min_cnr: int):
# avoid using the heights from a VAD with bad heights
i = 0
while (vads[i].z[0] == 0 and i < len(vads)):
i += 1
z = vads[i].z
return cls(ma.array([i.mean_cnr for i in vads]),
min_cnr,
# use any vad for location, presumably it doesn't change
vads[0].alt,
vads[0].lat,
vads[0].lon,
# currently we assume that heights are the same for all VAD
# in a set
z,
# lists of datetime objects, tz-aware
[i.stime for i in vads],
[i.etime for i in vads],
# data from VAD objects
[i.el for i in vads],
ma.array([i.nbeams for i in vads]),
ma.array([i.u for i in vads]),
ma.array([i.du for i in vads]),
ma.array([i.v for i in vads]),
ma.array([i.dv for i in vads]),
ma.array([i.w for i in vads]),
ma.array([i.dw for i in vads]),
ma.array([i.nbeams_used for i in vads]),
ma.array([i.speed for i in vads]),
ma.array([i.wdir for i in vads]),
ma.array([i.residual for i in vads]),
ma.array([i.correlation for i in vads]))
@classmethod
def from_file(cls, filename: str):
""" Create a VADSet object from a daily VAD netcdf file """
f = netCDF4.Dataset(filename, 'r')
stime = list(netCDF4.num2date(f.variables['time'][:],
f.variables['time'].units,
only_use_python_datetimes=True,
only_use_cftime_datetimes=False))
# reconstitute endtime from scan duration
etime = list(netCDF4.num2date(f.variables['time'][:] +
f.variables['scan_duration'],
f.variables['time'].units,
only_use_python_datetimes=True,
only_use_cftime_datetimes=False))
# make dates tz aware
stime = [s.replace(tzinfo=pytz.utc) for s in stime]
etime = [e.replace(tzinfo=pytz.utc) for e in etime]
# scalar values with a missing_value get read in as np.ma.MaskedArray
# if the single value is not masked, but as np.ma.core.MaskedConstant
# if the single value is masked. Instances of MaskedConstant don't
# compare well to each other or to other data types, so if the scalar
# lat/lon/alt is masked, replace it with a null-dimensioned masked
# array with a value of nan.
alt = (ma.array(np.nan) if f.variables['alt'][:] is np.ma.masked
else f.variables['alt'][:])
lat = (ma.array(np.nan) if f.variables['lat'][:] is np.ma.masked
else f.variables['lat'][:])
lon = (ma.array(np.nan) if f.variables['lon'][:] is np.ma.masked
else f.variables['lon'][:])
min_cnr = None
try: # accept min_cnr as either an attribute or a variable
min_cnr = int(f.input_ppi_min_cnr)
except AttributeError:
min_cnr = f.variables['snr_threshold'][:]
# create blank du, dv, dw if not present in netcdf
du = np.full(f.variables['u'][:].shape, np.nan)
dv = np.full(f.variables['v'][:].shape, np.nan)
dw = np.full(f.variables['w'][:].shape, np.nan)
try:
du = f.variables['u_error'][:]
dv = f.variables['v_error'][:]
dw = f.variables['w_error'][:]
except KeyError:
pass
return cls(ma.array(f.variables['mean_snr'][:]),
min_cnr,
alt,
lat,
lon,
f.variables['height'][:],
stime,
etime,
ma.array(f.variables['elevation_angle'][:]),
ma.array(f.variables['nbeams'][:]),
ma.array(f.variables['u'][:]),
ma.array(du),
ma.array(f.variables['v'][:]),
ma.array(dv),
ma.array(f.variables['w'][:]),
ma.array(dw),
ma.array(f.variables['nbeams_used'][:]),
ma.array(f.variables['wind_speed'][:]),
ma.array(f.variables['wind_direction'][:]),
ma.array(f.variables['residual'][:]),
ma.array(f.variables['correlation'][:]))
@classmethod
def from_PPIs(cls, ppi_files: List[str], min_cnr: int):
""" Create a VADSet object by performing VAD calculation on each of a
list of PPI files """
vads = []
for f in ppi_files:
ppi = PPI.from_file(f)
# for low elevation angles, VAD output isn't very helpful
if ppi.elevation < 6:
continue
# need at least 3 different azimuths to calculate VAD winds
if len(ppi.azimuth) < 3:
continue
ppi.threshold_cnr(min_cnr)
# generate VAD for this timestep
vad = VAD.calculate_ARM_VAD(ppi)
vads.append(vad)
if not vads:
# didn't successfully create any vads. can't continue processing.
return
return cls.from_VADs(vads, min_cnr)
def __eq__(self, other):
# for testing.
if (np.array_equal(self.mean_cnr, other.mean_cnr)
and np.array_equal(self.min_cnr, other.min_cnr)
and np.array_equal(self.alt, other.alt, equal_nan=True)
and np.array_equal(self.lat, other.lat, equal_nan=True)
and np.array_equal(self.lon, other.lon, equal_nan=True)
and np.array_equal(self.height, other.height, equal_nan=True)
and np.array_equal(self.stime, other.stime)
and np.array_equal(self.etime, other.etime)
and np.array_equal(self.el, other.el, equal_nan=True)
and np.array_equal(self.nbeams, other.nbeams, equal_nan=True)
and np.array_equal(self.u, other.u, equal_nan=True)
and np.array_equal(self.v, other.v, equal_nan=True)
and np.array_equal(self.w, other.w, equal_nan=True)
and np.array_equal(self.du, other.du, equal_nan=True)
and np.array_equal(self.dv, other.dv, equal_nan=True)
and np.array_equal(self.dw, other.dw, equal_nan=True)
and np.array_equal(self.nbeams_used, other.nbeams_used,
equal_nan=True)
and np.array_equal(self.speed, other.speed, equal_nan=True)
and np.array_equal(self.wdir, other.wdir, equal_nan=True)
and np.array_equal(self.residual, other.residual, equal_nan=True)
and np.array_equal(self.correlation, other.correlation,
equal_nan=True)):
return True
return False
def load_thresholds(self, config: str):
""" Read dict of thresholding values from the given json file path. """
# sample threshold config contents:
# {
# "correlation_min": 0.3,
# "residual_max": 10.0,
# "mean_snr_min": -29.0,
# "nbeams_used_min_fraction": 0.5
# }
# note: mean_snr name used here instead of min_cnr so it will match
# what is in netcdf input/output. really the quantity is cnr, and in
# the VAD objects it's correctly named mean_cnr
self.thresholds = json.load(open(config, "r"))
@staticmethod
def get_nbeams_used_mask(nbeams: List, nbeams_used: np.array,
threshold: float) -> np.array:
""" Since total nbeams can vary between scans, we give the threshold as
a fraction of possible nbeams that should be present. """
# separate out this function for testing
# nbeams_used = time x height array
# nbeams is just list of length times. broadcast it to an array of
# time x height
nbeams = ma.repeat(ma.array([nbeams]), nbeams_used.shape[-1],
axis=0).swapaxes(1, 0)
fraction = nbeams_used / nbeams
fraction = ma.masked_where(fraction < threshold,
fraction)
return ma.getmaskarray(fraction)
def get_mask(self) -> np.array:
""" Go through all variables to threshold on, combine into a single
mask that can be applied to all variables. Return the mask, in the form
of a boolean numpy array where true indicates the value is masked"""
masks = []
# create base mask of all false (so, will not mask any values) assuming
# all time-height arrays will have same dimensions, so just use
# correlation to get their shape
final_mask = np.full(self.correlation.shape, False)
if "correlation_min" in self.thresholds:
tmp = ma.masked_where(self.correlation
< self.thresholds["correlation_min"],
self.correlation)
masks.append(ma.getmaskarray(tmp))
if "residual_max" in self.thresholds:
tmp = ma.masked_where(self.residual
> self.thresholds["residual_max"],
self.residual)
masks.append(ma.getmaskarray(tmp))
if "mean_snr_min" in self.thresholds:
tmp = ma.masked_where(self.mean_cnr
< self.thresholds["mean_snr_min"],
self.mean_cnr)
masks.append(ma.getmaskarray(tmp))
if "nbeams_used_min_fraction" in self.thresholds:
mask = VADSet.get_nbeams_used_mask(self.nbeams, self.nbeams_used,
self.thresholds["nbeams_used_mi"
"n_fraction"])
masks.append(mask)
# combine all masks
for m in masks:
final_mask = ma.mask_or(final_mask, m)
return final_mask
def apply_thresholds(self, mask: np.array = None):
""" Apply thresholding for max/min values of different variables, if
present. Option to supply a mask is for testing, shoud otherwise use
get_mask() to mask by thresholds"""
if self.thresholds is None:
# can't apply thresholds if they're not present in the object.
return
if mask is None:
mask = self.get_mask()
# apply mask to values. use mask_or to preserve existing masked vals.
# wind components
self.u.mask = ma.mask_or(ma.getmaskarray(self.u), mask)
self.v.mask = ma.mask_or(ma.getmaskarray(self.v), mask)
self.w.mask = ma.mask_or(ma.getmaskarray(self.w), mask)
self.du.mask = ma.mask_or(ma.getmaskarray(self.du), mask)
self.dv.mask = ma.mask_or(ma.getmaskarray(self.dv), mask)
self.dw.mask = ma.mask_or(ma.getmaskarray(self.dw), mask)
self.speed.mask = ma.mask_or(ma.getmaskarray(self.speed), mask)
self.wdir.mask = ma.mask_or(ma.getmaskarray(self.wdir), mask)
# ancillary variables
self.nbeams_used.mask = ma.mask_or(ma.getmaskarray(self.nbeams_used),
mask)
self.residual.mask = ma.mask_or(ma.getmaskarray(self.residual), mask)
self.correlation.mask = ma.mask_or(ma.getmaskarray(self.correlation),
mask)
self.mean_cnr.mask = ma.mask_or(ma.getmaskarray(self.mean_cnr), mask)
def consensus_average(self, ranges: list) -> Tuple[ma.array, ma.array,
ma.array]:
""" Return consensus averaged u,v,w for 30-min increments starting at
list of time ranges """
u_mean = np.zeros((len(ranges), len(self.height)))
v_mean = np.zeros((len(ranges), len(self.height)))
w_mean = np.zeros((len(ranges), len(self.height)))
# for ind_start in range(len(secs)-1):
for idx, r in enumerate(ranges):
start = r
end = start + dt.timedelta(minutes=30)
thirty_min_ind = [i for i in range(len(self.stime))
if self.stime[i] >= start and
self.stime[i] < end]
if len(thirty_min_ind) == 0:
u_mean[idx, :] = np.nan
v_mean[idx, :] = np.nan
w_mean[idx, :] = np.nan
continue
u_all = np.array([self.u[i] for i in thirty_min_ind])
v_all = np.array([self.v[i] for i in thirty_min_ind])
w_all = np.array([self.w[i] for i in thirty_min_ind])
for hgt in range(len(self.height)):
# run consensus averaging with a window of 5 m/s
u_mean[idx, hgt] = Lidar_functions.consensus_avg(u_all[:, hgt],
5)
v_mean[idx, hgt] = Lidar_functions.consensus_avg(v_all[:, hgt],
5)
w_mean[idx, hgt] = Lidar_functions.consensus_avg(w_all[:, hgt],
5)
return (ma.masked_invalid(u_mean), ma.masked_invalid(v_mean),
ma.masked_invalid(w_mean))
def to_ARM_netcdf(self, filepath: str):
str_start_time = self.stime[0].strftime('%Y-%m-%d %H:%M:%S %Z')
str_day_start_time = self.stime[0].strftime('%Y-%m-%d')
# create netcdf file
nc_file = netCDF4.Dataset(filepath, 'w', format='NETCDF4')
# create dimensions: time, height, bound
nc_file.createDimension('time', None)
# still currently assuming that all files in a VADSet have the same
# heights
nc_file.createDimension('height', len(self.height))
nc_file.createDimension('bound', 2)
# create time variables
base_time = nc_file.createVariable('base_time', 'i')
base_time.string = str_start_time
base_time.long_name = 'Base time in Epoch'
base_time.units = 'seconds since 1970-01-01 00:00:00 UTC'
base_time.ancillary_variables = 'time_offset'
base_time[:] = netCDF4.date2num(self.stime[0], base_time.units)
time_offset = nc_file.createVariable('time_offset', 'd', 'time')
time_offset.long_name = 'Time offset from base_time'
time_offset.units = 'seconds since ' + str_start_time
time_offset.ancillary_variables = "base_time"
time_offset[:] = netCDF4.date2num(self.stime, time_offset.units)
stimes = nc_file.createVariable('time', 'd', 'time')
stimes.long_name = 'Time offset from midnight'
stimes.units = 'seconds since ' + str_day_start_time + ' 00:00:00 UTC'
stimes.bounds = 'time_bounds'
stimes[:] = netCDF4.date2num(self.stime, stimes.units)
time_bounds = nc_file.createVariable('time_bounds', 'd',
('time', 'bound'))
time_bounds[:, :] = list(zip(netCDF4.date2num(self.stime,
base_time.units),
netCDF4.date2num(self.etime,
base_time.units)))
# create height variable
height = nc_file.createVariable('height', 'f', 'height')
height[:] = self.height
height.long_name = 'Height above ground level'
height.units = 'm'
height.standard_name = 'height'
# add base vars
self.add_base_variables(nc_file)
self.add_aux_variables(nc_file)
# add basic attributes for all file types
nc_file.Conventions = 'ARM-1.1'
nc_file.history = 'created on ' + dt.datetime.utcnow().strftime(
'%Y/%m/%d %H:%M:%S UTC')
nc_file.command_line = " ".join(sys.argv)
# add file type specific attributes
self.add_attributes(nc_file)
nc_file.close()
def add_base_variables(self, nc_file: netCDF4.Dataset):
"""
Add base wind variables to netCDF
"""
# location
lat = nc_file.createVariable('lat', 'f')
lat.missing_value = -9999.0
lat[:] = VADSet.missing_val_if_nan(self.lat)
lat.long_name = 'North latitude'
lat.units = 'degree_N'
lat.valid_min = -90
lat.valid_max = 90
lat.standard_name = 'latitude'
lon = nc_file.createVariable('lon', 'f')
lon.missing_value = -9999.0
lon[:] = VADSet.missing_val_if_nan(self.lon)
lon.long_name = 'East longitude'
lon.units = 'degree_E'
lon.valid_min = -180
lon.valid_max = 180
lon.standard_name = 'longitude'
alt = nc_file.createVariable('alt', 'f')
alt.missing_value = -9999.0
alt[:] = VADSet.missing_val_if_nan(self.alt)
alt.long_name = 'Altitude above mean sea level'
alt.units = 'm'
alt.standard_name = 'altitude'
# uvw
u = nc_file.createVariable('u', 'f', ('time', 'height'))
u.missing_value = -9999.0
u[:, :] = self.u
u.long_name = 'Eastward component of wind vector'
u.units = 'm/s'
v = nc_file.createVariable('v', 'f', ('time', 'height'))
v.missing_value = -9999.0
v[:, :] = self.v
v.long_name = 'Northward component of wind vector'
v.units = 'm/s'
w = nc_file.createVariable('w', 'f', ('time', 'height'))
w.missing_value = -9999.0
w[:, :] = self.w
w.long_name = 'Vertical component of wind vector'
w.units = 'm/s'
# wspd/wdir
wind_speed = nc_file.createVariable('wind_speed', 'f',
('time', 'height'))
wind_speed.missing_value = -9999.0
wind_speed[:, :] = self.speed
wind_speed.long_name = 'Wind speed'
wind_speed.units = 'm/s'
wind_direction = nc_file.createVariable('wind_direction', 'f',
('time', 'height'))
wind_direction.missing_value = -9999.0
wind_direction[:, :] = self.wdir
wind_direction.long_name = 'Wind direction'
wind_direction.units = 'degree'
# residual, correlation, mean_snr (present in both vad + consensus)
residual = nc_file.createVariable('residual', 'f', ('time', 'height'))
residual.missing_value = -9999.0
residual[:, :] = self.residual
residual.long_name = 'Fit residual'
residual.units = 'm/s'
correlation = nc_file.createVariable('correlation', 'f',
('time', 'height'))
correlation.missing_value = -9999.0
correlation[:, :] = self.correlation
correlation.long_name = 'Fit correlation coefficient'
correlation.units = 'unitless'
# put mean cnr in file as mean snr to match ARM format (it is still cnr
# though)
mean_snr = nc_file.createVariable('mean_snr', 'f',
('time', 'height'))
mean_snr.missing_value = -9999.0
mean_snr[:, :] = self.mean_cnr
mean_snr.long_name = ('Signal to noise ratio averaged over nbeams '
'(derived from CNR)')
mean_snr.units = 'unitless'
def add_aux_variables(self, nc_file: netCDF4.Dataset):
"""
Add auxiliary variables (generally metadata, that are different between
VADSet and ConsensusSet)
"""
# Currently not used because values are incorrect
# Need to relook at the equations in calcA()
# uvw errors
#u_error = nc_file.createVariable('u_error', 'f', ('time', 'height'))
#u_error.missing_value = -9999.0
#u_error[:, :] = self.du
#u_error.long_name = ('Sampling uncertainty in eastward component of'
# ' wind due to azimuths used assuming 1 m/s'
# ' error in radial velocities')
#u_error.units = 'm/s'
#v_error = nc_file.createVariable('v_error', 'f', ('time', 'height'))
#v_error.missing_value = -9999.0
#v_error[:, :] = self.dv
#v_error.long_name = ('Sampling uncertainty in northward component of'
# ' wind due to azimuths used assuming 1 m/s'
# ' error in radial velocities')
#v_error.units = 'm/s'
#w_error = nc_file.createVariable('w_error', 'f', ('time', 'height'))
#w_error.missing_value = -9999.0
#w_error[:, :] = self.dw
#w_error.long_name = ('Sampling uncertainty in vertical component of'
# ' wind due to azimuths used assuming 1 m/s'
# ' error in radial velocities')
#w_error.units = 'm/s'
# wspd/wdir errors (not currently used)
# wind_speed_error = nc_file.createVariable('wind_speed_error', 'f',
# ('time', 'height'))
# wind_speed_error.missing_value = -9999.0
# # not currently calculating wind speed error?
# wind_speed_error[:, :] = wind_speed[:, :] * np.nan
# wind_speed_error.long_name = 'Wind speed error'
# wind_speed_error.units = 'm/s'
# wind_direction_error = nc_file.createVariable('wind_direction_error',
# 'f', ('time', 'height'))
# wind_direction_error.missing_value = -9999.0
# wind_direction_error[:, :] = wind_direction[:, :] * np.nan
# wind_direction_error.long_name = 'Wind direction error'
# wind_direction_error.units = 'm/s'
# scan metadata
scan_duration = nc_file.createVariable('scan_duration', 'f', 'time')
scan_duration.missing_value = -9999.0
scan_duration[:] = [(i[0] - i[1]).total_seconds()
for i in zip(self.etime, self.stime)]
scan_duration.long_name = 'PPI scan duration'
scan_duration.units = 'second'
elevation_angle = nc_file.createVariable('elevation_angle', 'f',
'time')
elevation_angle.missing_value = -9999.0
elevation_angle[:] = self.el
elevation_angle.long_name = 'Beam elevation angle'
elevation_angle.units = 'degree'
nbeams = nc_file.createVariable('nbeams', 'i', 'time')
nbeams[:] = self.nbeams
nbeams.long_name = ('Number of beams (azimuth angles) in each PPI')
nbeams.units = 'unitless'
nbeams_used = nc_file.createVariable('nbeams_used', 'i', ('time',
'height'))
nbeams_used.missing_value = -9999.0
nbeams_used[:, :] = self.nbeams_used
nbeams_used.long_name = ('Number of beams (azimuth angles) used in '
'wind vector estimations')
nbeams_used.units = 'unitless'
def add_attributes(self, nc_file: netCDF4.Dataset):
"""
Add metadata attributes to netCDF
"""
nc_file.input_ppi_min_cnr = self.min_cnr
# add thresholding vals as attributes, if present
if self.thresholds:
for t in self.thresholds:
name = "threshold_" + t
nc_file.setncattr(name, self.thresholds[t])