-
Notifications
You must be signed in to change notification settings - Fork 1
/
config_training.yaml
101 lines (66 loc) · 2.61 KB
/
config_training.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#####################################################################
############ CONFIG FILE FOR TRAINING ECOVAD FROM SCRATCH ###########
#####################################################################
#################################################
# Parameters for Generating a synthetic dataset #
#################################################
# Path to the audio files to be processed (e.g. the ones that come from
# the field experiment)
AUDIO_PATH: "./assets/demo_data/training_model/soundscape_data/"
# Path to the directory containing human speech files
SPEECH_DIR: "./assets/demo_data/training_model/human_voices/"
# Path to the directory containing noise (e.g. environmental noises, animal vocalization)
NOISE_DIR: "./assets/demo_data/training_model/natural_sounds/"
# Length of the output audio file (in ms)
LENGTH_SEGMENTS: 3
# Probability of including human speech on a given segment
PROBA_SPEECH: 0.5
# When speech is added, what is the probability of adding noise to the segment
PROBA_NOISE_WHEN_SPEECH: 0.5
# When speech is added, what is the probability of adding noise to the segment
PROBA_NOISE_WHEN_NO_SPEECH: 0.9
# Path to the folder storing the segments
AUDIO_OUT_DIR: "./assets/demo_data/training_model/synthetic_dataset"
# Whether the dataset should include background noises
INCLUDE_NOISES: True
# Whether the dataset should include the soundscape
INCLUDE_SOUNDSCAPE: True
########################################
#### Parameters for training ecoVAD ####
########################################
######################
# Path specification #
######################
# Path to the dataset containing the training and validation data
TRAIN_VAL_PATH: "./assets/demo_data/training_model/synthetic_dataset"
# Path to store the model weights
MODEL_SAVE_PATH: "./assets/model_weights/ecoVAD_weights_demo.pt"
# Save the checkpoints of early stopping call
CKPT_SAVE_PATH: "./assets/model_weights/ecoVAD_ckpts_demo.pt"
#########################
# Model hyperparameters #
#########################
# Learning rate
LR: 0.001
# Momentum
MOMENTUM: 0.99
# Decay
DECAY: 0.01
# Batch size to use for training
BATCH_SIZE: 32
# Number of epochs to train the model for
NUM_EPOCH: 50
##############################
# Tensorboard specifications #
##############################
# Tensorboard folder
TB_PREFIX: "demo_training"
# Comment suffix for Tensorboard run
TB_COMMENT: "no-comments"
###########################
# Hardware specifications #
###########################
# Numbers of workers, best to have num_workers = number of CPUs
NUM_WORKERS: 0
# Whether to training pipeline should use a GPU
USE_GPU: False