|
38 | 38 | "outputs": [],
|
39 | 39 | "source": [
|
40 | 40 | "DATA_IN_PATH = './data_in/'\n",
|
41 |
| - "DATA_OUT_PATH = './data_out/'\n", |
42 | 41 | "TRAIN_CLEAN_DATA = 'train_clean.csv'\n",
|
43 | 42 | "\n",
|
44 | 43 | "RANDOM_SEED = 42\n",
|
|
192 | 191 | "metadata": {},
|
193 | 192 | "outputs": [],
|
194 | 193 | "source": [
|
195 |
| - "predicted = lgs.predict(X_test)\n", |
196 |
| - "from sklearn import metrics\n", |
197 |
| - "\n", |
198 |
| - "fpr, tpr, _ = metrics.roc_curve(y_test, (lgs.predict_proba(X_test)[:, 1]))\n", |
199 |
| - "auc = metrics.auc(fpr, tpr)\n", |
200 |
| - "\n", |
201 |
| - "print(\"------------\")\n", |
202 |
| - "print(\"Accuracy: %f\" % lgs.score(X_test, y_test)) #checking the accuracy\n", |
203 |
| - "print(\"Precision: %f\" % metrics.precision_score(y_test, predicted))\n", |
204 |
| - "print(\"Recall: %f\" % metrics.recall_score(y_test, predicted))\n", |
205 |
| - "print(\"F1-Score: %f\" % metrics.f1_score(y_test, predicted))\n", |
206 |
| - "print(\"AUC: %f\" % auc)" |
| 194 | + "print(\"Accuracy: %f\" % lgs.score(X_test, y_test)) " |
207 | 195 | ]
|
208 | 196 | },
|
209 | 197 | {
|
|
254 | 242 | "metadata": {},
|
255 | 243 | "outputs": [],
|
256 | 244 | "source": [
|
257 |
| - "test_predicted = lgs.predict(test_data_vecs)" |
258 |
| - ] |
259 |
| - }, |
260 |
| - { |
261 |
| - "cell_type": "code", |
262 |
| - "execution_count": null, |
263 |
| - "metadata": {}, |
264 |
| - "outputs": [], |
265 |
| - "source": [ |
266 |
| - "ids = list(test_data['id'])\n", |
| 245 | + "DATA_OUT_PATH = './data_out/'\n", |
| 246 | + "\n", |
| 247 | + "test_predicted = lgs.predict(test_data_vecs)\n", |
267 | 248 | "\n",
|
268 |
| - "answer_dataset = pd.DataFrame({'id': ids, 'sentiment': test_predicted})" |
| 249 | + "if not os.path.exists(DATA_OUT_PATH):\n", |
| 250 | + " os.makedirs(DATA_OUT_PATH)\n", |
| 251 | + " \n", |
| 252 | + "ids = list(test_data['id'])\n", |
| 253 | + "answer_dataset = pd.DataFrame({'id': ids, 'sentiment': test_predicted})\n", |
| 254 | + "answer_dataset.to_csv(DATA_OUT_PATH + 'lgs_w2v_answer.csv', index=False, quoting=3)" |
269 | 255 | ]
|
270 | 256 | },
|
271 | 257 | {
|
|
274 | 260 | "metadata": {},
|
275 | 261 | "outputs": [],
|
276 | 262 | "source": [
|
277 |
| - "if not os.path.exists(DATA_OUT_PATH):\n", |
278 |
| - " os.makedirs(DATA_OUT_PATH)\n", |
279 |
| - "\n", |
280 |
| - "answer_dataset.to_csv(DATA_OUT_PATH + 'lgs_w2v_answer.csv', index=False, quoting=3)" |
| 263 | + "model_name = \"300features_40minwords_10context\"\n", |
| 264 | + "model.save(model_name)" |
281 | 265 | ]
|
282 | 266 | }
|
283 | 267 | ],
|
|
297 | 281 | "name": "python",
|
298 | 282 | "nbconvert_exporter": "python",
|
299 | 283 | "pygments_lexer": "ipython3",
|
300 |
| - "version": "3.6.8" |
| 284 | + "version": "3.8.3" |
301 | 285 | }
|
302 | 286 | },
|
303 | 287 | "nbformat": 4,
|
|
0 commit comments