-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
sampleNonZeroPlugin.cpp
771 lines (654 loc) · 23.3 KB
/
sampleNonZeroPlugin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//!
//! sampleNonZeroPlugin.cpp
//! This file contains a sample demonstrating a plugin for NonZero.
//! It can be run with the following command line:
//! Command: ./sample_non_zero_plugin [-h or --help] [-d=/path/to/data/dir or --datadir=/path/to/data/dir]
//!
// Define TRT entrypoints used in common code
#define DEFINE_TRT_ENTRYPOINTS 1
#define DEFINE_TRT_LEGACY_PARSER_ENTRYPOINT 0
#include "argsParser.h"
#include "buffers.h"
#include "common.h"
#include "logger.h"
#include "nonZeroKernel.h"
#include "parserOnnxConfig.h"
#include "NvInfer.h"
#include <cuda_runtime_api.h>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <random>
#include <sstream>
using namespace nvinfer1;
using samplesCommon::SampleUniquePtr;
std::string const kSAMPLE_NAME = "TensorRT.sample_non_zero_plugin";
using half = __half;
void nonZeroIndicesHelper(nvinfer1::DataType type, void const* X, void* indices, void* count, void const* K, int32_t R,
int32_t C, bool rowOrder, cudaStream_t stream)
{
if (type == nvinfer1::DataType::kFLOAT)
{
nonZeroIndicesImpl<float>(static_cast<float const*>(X), static_cast<int32_t*>(indices),
static_cast<int32_t*>(count), static_cast<int32_t const*>(K), R, C, rowOrder, stream);
}
else if (type == nvinfer1::DataType::kHALF)
{
nonZeroIndicesImpl<half>(static_cast<half const*>(X), static_cast<int32_t*>(indices),
static_cast<int32_t*>(count), static_cast<int32_t const*>(K), R, C, rowOrder, stream);
}
else
{
ASSERT(false && "Unsupported data type");
}
}
class NonZeroPlugin : public IPluginV3, public IPluginV3OneCore, public IPluginV3OneBuild, public IPluginV3OneRuntime
{
public:
NonZeroPlugin(NonZeroPlugin const& p) = default;
NonZeroPlugin(bool rowOrder)
: mRowOrder(rowOrder)
{
initFieldsToSerialize();
}
void initFieldsToSerialize()
{
mDataToSerialize.clear();
mDataToSerialize.emplace_back(PluginField("rowOrder", &mRowOrder, PluginFieldType::kINT32, 1));
mFCToSerialize.nbFields = mDataToSerialize.size();
mFCToSerialize.fields = mDataToSerialize.data();
}
// IPluginV3 methods
IPluginCapability* getCapabilityInterface(PluginCapabilityType type) noexcept override
{
try
{
if (type == PluginCapabilityType::kBUILD)
{
return static_cast<IPluginV3OneBuild*>(this);
}
if (type == PluginCapabilityType::kRUNTIME)
{
return static_cast<IPluginV3OneRuntime*>(this);
}
ASSERT(type == PluginCapabilityType::kCORE);
return static_cast<IPluginV3OneCore*>(this);
}
catch (std::exception const& e)
{
sample::gLogError << e.what() << std::endl;
}
return nullptr;
}
IPluginV3* clone() noexcept override
{
auto clone = std::make_unique<NonZeroPlugin>(*this);
clone->initFieldsToSerialize();
return clone.release();
}
// IPluginV3OneCore methods
char const* getPluginName() const noexcept override
{
return "NonZeroPlugin";
}
char const* getPluginVersion() const noexcept override
{
return "0";
}
char const* getPluginNamespace() const noexcept override
{
return "";
}
// IPluginV3OneBuild methods
int32_t getNbOutputs() const noexcept override
{
return 2;
}
int32_t configurePlugin(DynamicPluginTensorDesc const* in, int32_t nbInputs, DynamicPluginTensorDesc const* out,
int32_t nbOutputs) noexcept override
{
return 0;
}
bool supportsFormatCombination(
int32_t pos, DynamicPluginTensorDesc const* inOut, int32_t nbInputs, int32_t nbOutputs) noexcept override
{
bool typeOk{false};
if (pos == 0)
{
typeOk = inOut[0].desc.type == DataType::kFLOAT || inOut[0].desc.type == DataType::kHALF;
}
else if (pos == 1)
{
typeOk = inOut[1].desc.type == DataType::kINT32;
}
else // pos == 2
{
// size tensor outputs must be NCHW INT32
typeOk = inOut[2].desc.type == DataType::kINT32;
}
return inOut[pos].desc.format == PluginFormat::kLINEAR && typeOk;
}
int32_t getOutputDataTypes(
DataType* outputTypes, int32_t nbOutputs, DataType const* inputTypes, int32_t nbInputs) const noexcept override
{
outputTypes[0] = DataType::kINT32;
outputTypes[1] = DataType::kINT32;
return 0;
}
int32_t getOutputShapes(DimsExprs const* inputs, int32_t nbInputs, DimsExprs const* shapeInputs,
int32_t nbShapeInputs, DimsExprs* outputs, int32_t nbOutputs, IExprBuilder& exprBuilder) noexcept override
{
// The input tensor must be 2-D
if (inputs[0].nbDims != 2)
{
return -1;
}
outputs[0].nbDims = 2;
auto upperBound = exprBuilder.operation(DimensionOperation::kPROD, *inputs[0].d[0], *inputs[0].d[1]);
// On average, we can assume that half of all elements will be non-zero
auto optValue = exprBuilder.operation(DimensionOperation::kFLOOR_DIV, *upperBound, *exprBuilder.constant(2));
auto numNonZeroSizeTensor = exprBuilder.declareSizeTensor(1, *optValue, *upperBound);
if (!mRowOrder)
{
outputs[0].d[0] = exprBuilder.constant(2);
outputs[0].d[1] = numNonZeroSizeTensor;
}
else
{
outputs[0].d[0] = numNonZeroSizeTensor;
outputs[0].d[1] = exprBuilder.constant(2);
}
// output at index 1 is a size tensor
outputs[1].nbDims = 0; // size tensors must be declared as 0-D
return 0;
}
// IPluginV3OneRuntime methods
int32_t enqueue(PluginTensorDesc const* inputDesc, PluginTensorDesc const* outputDesc, void const* const* inputs,
void* const* outputs, void* workspace, cudaStream_t stream) noexcept override
{
int32_t const R = inputDesc[0].dims.d[0];
int32_t const C = inputDesc[0].dims.d[1];
auto type = inputDesc[0].type;
if (!(type == nvinfer1::DataType::kHALF || type == nvinfer1::DataType::kFLOAT))
{
sample::gLogError << "Unsupported: Sample only supports DataType::kHALF and DataType::FLOAT" << std::endl;
return -1;
}
cudaMemsetAsync(outputs[1], 0, sizeof(int32_t), stream);
if (!mRowOrder)
{
// When constructing a column major output, the kernel needs to be aware of the total number of non-zero
// elements so as to write the non-zero indices at the correct places. Therefore, we will launch the kernel
// twice: first, only to calculate the total non-zero count, which will be stored in workspace; and
// then to actually write the non-zero indices to the outputs[0] buffer.
cudaMemsetAsync(workspace, 0, sizeof(int32_t), stream);
nonZeroIndicesHelper(type, inputs[0], nullptr, workspace, 0, R, C, mRowOrder, stream);
nonZeroIndicesHelper(type, inputs[0], outputs[0], outputs[1], workspace, R, C, mRowOrder, stream);
}
else
{
nonZeroIndicesHelper(type, inputs[0], outputs[0], outputs[1], 0, R, C, mRowOrder, stream);
}
return 0;
}
int32_t onShapeChange(
PluginTensorDesc const* in, int32_t nbInputs, PluginTensorDesc const* out, int32_t nbOutputs) noexcept override
{
return 0;
}
IPluginV3* attachToContext(IPluginResourceContext* context) noexcept override
{
return clone();
}
PluginFieldCollection const* getFieldsToSerialize() noexcept override
{
return &mFCToSerialize;
}
size_t getWorkspaceSize(DynamicPluginTensorDesc const* inputs, int32_t nbInputs,
DynamicPluginTensorDesc const* outputs, int32_t nbOutputs) const noexcept override
{
return sizeof(int32_t);
}
private:
bool mRowOrder{true};
std::vector<nvinfer1::PluginField> mDataToSerialize;
nvinfer1::PluginFieldCollection mFCToSerialize;
};
class NonZeroPluginCreator : public nvinfer1::IPluginCreatorV3One
{
public:
NonZeroPluginCreator()
{
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("rowOrder", nullptr, PluginFieldType::kINT32, 1));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* getPluginName() const noexcept override
{
return "NonZeroPlugin";
}
char const* getPluginVersion() const noexcept override
{
return "0";
}
PluginFieldCollection const* getFieldNames() noexcept override
{
return &mFC;
}
IPluginV3* createPlugin(char const* name, PluginFieldCollection const* fc, TensorRTPhase phase) noexcept override
{
try
{
bool rowOrder{true};
for (int32_t i = 0; i < fc->nbFields; ++i)
{
auto const fieldName(fc->fields[i].name);
if (std::strcmp(fieldName, "rowOrder") == 0)
{
rowOrder = *static_cast<bool const*>(fc->fields[i].data);
}
}
return new NonZeroPlugin(rowOrder);
}
catch (std::exception const& e)
{
sample::gLogError << e.what() << std::endl;
}
return nullptr;
}
char const* getPluginNamespace() const noexcept override
{
return "";
}
private:
nvinfer1::PluginFieldCollection mFC;
std::vector<nvinfer1::PluginField> mPluginAttributes;
};
namespace
{
struct NonZeroParams : public samplesCommon::SampleParams
{
bool rowOrder{true};
};
} // namespace
//! \brief The SampleNonZeroPlugin class implements a NonZero plugin
//!
//! \details The plugin is able to output the non-zero indices in row major or column major order
//!
class SampleNonZeroPlugin
{
public:
SampleNonZeroPlugin(NonZeroParams const& params)
: mParams(params)
, mRuntime(nullptr)
, mEngine(nullptr)
{
mSeed = static_cast<uint32_t>(time(nullptr));
}
//!
//! \brief Function builds the network engine
//!
bool build();
//!
//! \brief Runs the TensorRT inference engine for this sample
//!
bool infer();
private:
NonZeroParams mParams; //!< The parameters for the sample.
nvinfer1::Dims mInputDims; //!< The dimensions of the input to the network.
nvinfer1::Dims mOutputDims; //!< The dimensions of the output to the network.
std::shared_ptr<nvinfer1::IRuntime> mRuntime; //!< The TensorRT runtime used to deserialize the engine
std::shared_ptr<nvinfer1::ICudaEngine> mEngine; //!< The TensorRT engine used to run the network
uint32_t mSeed{};
//!
//! \brief Creates a TensorRT network and inserts a NonZero plugin
//!
bool constructNetwork(SampleUniquePtr<nvinfer1::IBuilder>& builder,
SampleUniquePtr<nvinfer1::INetworkDefinition>& network, SampleUniquePtr<nvinfer1::IBuilderConfig>& config);
//!
//! \brief Reads the input and stores the result in a managed buffer
//!
bool processInput(samplesCommon::BufferManager const& buffers);
//!
//! \brief Verifies the result
//!
bool verifyOutput(samplesCommon::BufferManager const& buffers);
};
//!
//! \brief Creates the network, configures the builder and creates the network engine
//!
//! \details This function creates a network containing a NonZeroPlugin and builds
//! the engine that will be used to run the plugin (mEngine)
//!
//! \return true if the engine was created successfully and false otherwise
//!
bool SampleNonZeroPlugin::build()
{
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(sample::gLogger.getTRTLogger()));
if (!builder)
{
return false;
}
auto network = SampleUniquePtr<nvinfer1::INetworkDefinition>(builder->createNetworkV2(0));
if (!network)
{
return false;
}
auto config = SampleUniquePtr<nvinfer1::IBuilderConfig>(builder->createBuilderConfig());
if (!config)
{
return false;
}
auto pluginCreator = std::make_unique<NonZeroPluginCreator>();
getPluginRegistry()->registerCreator(*pluginCreator.get(), "");
auto constructed = constructNetwork(builder, network, config);
if (!constructed)
{
return false;
}
// CUDA stream used for profiling by the builder.
auto profileStream = samplesCommon::makeCudaStream();
if (!profileStream)
{
return false;
}
config->setProfileStream(*profileStream);
SampleUniquePtr<IHostMemory> plan{builder->buildSerializedNetwork(*network, *config)};
if (!plan)
{
return false;
}
mRuntime = std::shared_ptr<nvinfer1::IRuntime>(createInferRuntime(sample::gLogger.getTRTLogger()));
if (!mRuntime)
{
return false;
}
mEngine = std::shared_ptr<nvinfer1::ICudaEngine>(
mRuntime->deserializeCudaEngine(plan->data(), plan->size()), samplesCommon::InferDeleter());
if (!mEngine)
{
return false;
}
ASSERT(network->getNbInputs() == 1);
mInputDims = network->getInput(0)->getDimensions();
ASSERT(mInputDims.nbDims == 2);
ASSERT(network->getNbOutputs() == 2);
mOutputDims = network->getOutput(0)->getDimensions();
ASSERT(mOutputDims.nbDims == 2);
return true;
}
//!
//! \brief Creates a network with a single custom layer containing the NonZero plugin and marks the
//! output layers
//!
//! \param network Pointer to the network that will be populated with the NonZero plugin
//!
//! \param builder Pointer to the engine builder
//!
bool SampleNonZeroPlugin::constructNetwork(SampleUniquePtr<nvinfer1::IBuilder>& builder,
SampleUniquePtr<nvinfer1::INetworkDefinition>& network, SampleUniquePtr<nvinfer1::IBuilderConfig>& config)
{
if (mParams.fp16)
{
config->setFlag(BuilderFlag::kFP16);
}
std::default_random_engine generator(mSeed);
std::uniform_int_distribution<int32_t> distr(10, 25);
int32_t const R = distr(generator);
int32_t const C = distr(generator);
auto* in = network->addInput("Input", DataType::kFLOAT, {2, {R, C}});
ASSERT(in != nullptr);
std::vector<PluginField> const vecPF{{"rowOrder", &mParams.rowOrder, PluginFieldType::kINT32, 1}};
PluginFieldCollection pfc{static_cast<int32_t>(vecPF.size()), vecPF.data()};
auto pluginCreator = static_cast<IPluginCreatorV3One*>(getPluginRegistry()->getCreator("NonZeroPlugin", "0", ""));
auto plugin = std::unique_ptr<IPluginV3>(pluginCreator->createPlugin("NonZeroPlugin", &pfc, TensorRTPhase::kBUILD));
std::vector<ITensor*> inputsVec{in};
auto pluginNonZeroLayer = network->addPluginV3(inputsVec.data(), inputsVec.size(), nullptr, 0, *plugin);
ASSERT(pluginNonZeroLayer != nullptr);
ASSERT(pluginNonZeroLayer->getOutput(0) != nullptr);
ASSERT(pluginNonZeroLayer->getOutput(1) != nullptr);
pluginNonZeroLayer->getOutput(0)->setName("Output0");
pluginNonZeroLayer->getOutput(1)->setName("Output1");
network->markOutput(*(pluginNonZeroLayer->getOutput(0)));
network->markOutput(*(pluginNonZeroLayer->getOutput(1)));
return true;
}
//!
//! \brief Runs the TensorRT inference engine for this sample
//!
//! \details This function is the main execution function of the sample. It allocates the buffer,
//! sets inputs and executes the engine.
//!
bool SampleNonZeroPlugin::infer()
{
// Since the data dependent output size cannot be inferred from the engine denote a sufficient size for the
// corresponding output buffer (along with the rest of the I/O tensors)
std::vector<int64_t> ioVolumes = {mInputDims.d[0] * mInputDims.d[1], mInputDims.d[0] * mInputDims.d[1] * 2, 1};
// Create RAII buffer manager object
samplesCommon::BufferManager buffers(mEngine, ioVolumes);
auto context = SampleUniquePtr<nvinfer1::IExecutionContext>(mEngine->createExecutionContext());
if (!context)
{
return false;
}
for (int32_t i = 0, e = mEngine->getNbIOTensors(); i < e; ++i)
{
auto const name = mEngine->getIOTensorName(i);
context->setTensorAddress(name, buffers.getDeviceBuffer(name));
}
// Read the input data into the managed buffers
ASSERT(mParams.inputTensorNames.size() == 1);
if (!processInput(buffers))
{
return false;
}
// Create CUDA stream for the execution of this inference.
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// Memcpy from host input buffers to device input buffers
buffers.copyInputToDeviceAsync(stream);
bool status = context->enqueueV3(stream);
if (!status)
{
return false;
}
// Asynchronously copy data from device output buffers to host output buffers.
buffers.copyOutputToHostAsync(stream);
// Wait for the work in the stream to complete.
CHECK(cudaStreamSynchronize(stream));
// Release stream.
CHECK(cudaStreamDestroy(stream));
// Verify results
if (!verifyOutput(buffers))
{
return false;
}
return true;
}
//!
//! \brief Reads the input and stores the result in a managed buffer
//!
bool SampleNonZeroPlugin::processInput(samplesCommon::BufferManager const& buffers)
{
int32_t const inputH = mInputDims.d[0];
int32_t const inputW = mInputDims.d[1];
std::vector<uint8_t> fileData(inputH * inputW);
std::default_random_engine generator(mSeed);
std::uniform_int_distribution<int32_t> distr(0, 9);
auto const number = distr(generator);
readPGMFile(locateFile(std::to_string(number) + ".pgm", mParams.dataDirs), fileData.data(), inputH, inputW);
float* hostDataBuffer = static_cast<float*>(buffers.getHostBuffer(mParams.inputTensorNames[0]));
for (int32_t i = 0; i < inputH * inputW; ++i)
{
auto const raw = 1.0 - float(fileData[i] / 255.0);
hostDataBuffer[i] = raw;
}
sample::gLogInfo << "Input:" << std::endl;
for (int32_t i = 0; i < inputH; ++i)
{
for (int32_t j = 0; j < inputW; ++j)
{
sample::gLogInfo << hostDataBuffer[i * inputW + j];
if (j < inputW - 1)
{
sample::gLogInfo << ", ";
}
}
sample::gLogInfo << std::endl;
}
sample::gLogInfo << std::endl;
return true;
}
//!
//! \brief Verify result
//!
//! \return whether the output correctly identifies all (and only) non-zero elements
//!
bool SampleNonZeroPlugin::verifyOutput(samplesCommon::BufferManager const& buffers)
{
float* input = static_cast<float*>(buffers.getHostBuffer(mParams.inputTensorNames[0]));
int32_t* output = static_cast<int32_t*>(buffers.getHostBuffer(mParams.outputTensorNames[0]));
int32_t count = *static_cast<int32_t*>(buffers.getHostBuffer(mParams.outputTensorNames[1]));
std::vector<bool> covered(mInputDims.d[0] * mInputDims.d[1], false);
sample::gLogInfo << "Output:" << std::endl;
if (mParams.rowOrder)
{
for (int32_t i = 0; i < count; ++i)
{
for (int32_t j = 0; j < 2; ++j)
{
sample::gLogInfo << output[j + 2 * i] << " ";
}
sample::gLogInfo << std::endl;
}
}
else
{
for (int32_t i = 0; i < 2; ++i)
{
for (int32_t j = 0; j < count; ++j)
{
sample::gLogInfo << output[j + count * i] << " ";
}
sample::gLogInfo << std::endl;
}
}
if (!mParams.rowOrder)
{
for (int32_t i = 0; i < count; ++i)
{
auto const idx = output[i] * mInputDims.d[1] + output[i + count];
covered[idx] = true;
if (input[idx] == 0.F)
{
return false;
}
}
}
else
{
for (int32_t i = 0; i < count; ++i)
{
auto const idx = output[2 * i] * mInputDims.d[1] + output[2 * i + 1];
covered[idx] = true;
if (input[idx] == 0.F)
{
return false;
}
}
}
for (int32_t i = 0; i < static_cast<int32_t>(covered.size()); ++i)
{
if (!covered[i])
{
if (input[i] != 0.F)
{
return false;
}
}
}
return true;
}
//!
//! \brief Initializes members of the params struct using the command line args
//!
NonZeroParams initializeSampleParams(samplesCommon::Args const& args)
{
NonZeroParams params;
if (args.dataDirs.empty()) // Use default directories if user hasn't provided directory paths
{
params.dataDirs.push_back("data/mnist/");
params.dataDirs.push_back("data/samples/mnist/");
}
else // Use the data directory provided by the user
{
params.dataDirs = args.dataDirs;
}
params.inputTensorNames.push_back("Input");
params.outputTensorNames.push_back("Output0");
params.outputTensorNames.push_back("Output1");
params.fp16 = args.runInFp16;
params.rowOrder = args.rowOrder;
return params;
}
//!
//! \brief Prints the help information for running this sample
//!
void printHelpInfo()
{
std::cout << "Usage: ./sample_non_zero_plugin [-h or --help] [-d or --datadir=<path to data directory>]"
<< std::endl;
std::cout << "--help Display help information" << std::endl;
std::cout << "--datadir Specify path to a data directory, overriding the default. This option can be used "
"multiple times to add multiple directories. If no data directories are given, the default is to use "
"(data/samples/mnist/, data/mnist/)"
<< std::endl;
std::cout << "--fp16 Run in FP16 mode." << std::endl;
std::cout << "--columnOrder Run plugin in column major output mode." << std::endl;
}
int main(int argc, char** argv)
{
samplesCommon::Args args;
bool argsOK = samplesCommon::parseArgs(args, argc, argv);
if (!argsOK)
{
sample::gLogError << "Invalid arguments" << std::endl;
printHelpInfo();
return EXIT_FAILURE;
}
if (args.help)
{
printHelpInfo();
return EXIT_SUCCESS;
}
auto sampleTest = sample::gLogger.defineTest(kSAMPLE_NAME, argc, argv);
sample::gLogger.reportTestStart(sampleTest);
SampleNonZeroPlugin sample(initializeSampleParams(args));
sample::gLogInfo << "Building and running a GPU inference engine for NonZero plugin" << std::endl;
if (!sample.build())
{
return sample::gLogger.reportFail(sampleTest);
}
if (!sample.infer())
{
return sample::gLogger.reportFail(sampleTest);
}
return sample::gLogger.reportPass(sampleTest);
}