-
Notifications
You must be signed in to change notification settings - Fork 458
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Describe the bug
We got +20GB memory usage in a model with full checkpointing when switch self-attn from sdpa to FusedAttention
in te. after debug, we find that te save tensor references back to autograd ctx here. after this line, ctx.tensor_objects
will contains pytorch tensor reference and cause memory leak.
Steps to fix this bug:
add ctx.tensor_objects = None
after restore_from_saved
to release all torch.Tensor
references saved in ctx
Steps/Code to reproduce bug
- run this without fix above (modified from fsdp example):
# Copyright (c) 2022-2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# See LICENSE for license information.
import os
import argparse
from functools import partial
import torch
import torch.distributed as dist
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel, MixedPrecision
from torch.distributed.fsdp.wrap import always_wrap_policy, transformer_auto_wrap_policy
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
)
import transformer_engine.pytorch as te
from transformer_engine.common.recipe import Format, DelayedScaling
from transformer_engine.pytorch.distributed import prepare_te_modules_for_fsdp
LOCAL_RANK = int(os.getenv("LOCAL_RANK", "0"))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", "1"))
# RNG state tracker for checkpointing
rng_seed = 1234
torch.manual_seed(rng_seed)
torch.cuda.manual_seed(rng_seed)
CUDA_RNG_STATES_TRACKER = te.distributed.CudaRNGStatesTracker()
CUDA_RNG_STATES_TRACKER.add("model-parallel-rng", rng_seed)
def get_cuda_rng_tracker():
return CUDA_RNG_STATES_TRACKER
def apply_fsdp_checkpointing(model, blocks):
"""apply activation checkpointing to model
returns None as model is updated directly
"""
wrapper = lambda m: checkpoint_wrapper(
m,
checkpoint_fn=te.distributed.checkpoint,
use_reentrant=False,
get_rng_state_tracker=get_cuda_rng_tracker,
)
check_fn = lambda submodule: isinstance(submodule, blocks)
apply_activation_checkpointing(model, checkpoint_wrapper_fn=wrapper, check_fn=check_fn)
def lowercase(s):
return str(s).lower()
def torch_dtype(d):
typemap = {
"fp32": torch.float32,
"float32": torch.float32,
"fp16": torch.float16,
"float16": torch.float16,
"bf16": torch.bfloat16,
"bfloat16": torch.bfloat16,
}
if lowercase(d) not in typemap.keys():
raise TypeError
return typemap[lowercase(d)]
te_layer_map = {
"linear": te.Linear,
"layernorm": te.LayerNorm,
"rmsnorm": te.RMSNorm,
"layernormlinear": te.LayerNormLinear,
"layernormmlp": te.LayerNormMLP,
"multiheadattention": te.MultiheadAttention,
"transformerlayer": te.TransformerLayer,
}
def te_layer(l):
if l is not None:
if lowercase(l) not in te_layer_map.keys():
raise TypeError
return te_layer_map[lowercase(l)]
return None
def get_layer_args(opts):
hidden_size = opts.num_heads * opts.head_dim
layer_args = (hidden_size,)
layer_kwargs = {
"params_dtype": opts.dtype,
"device": "cuda" if opts.no_defer_init else "meta",
"get_rng_state_tracker": get_cuda_rng_tracker,
}
if opts.layer_type in [te.Linear, te.LayerNormLinear, te.LayerNormMLP]:
ffn_hidden_size = 3 * hidden_size if opts.num_layers == 1 else hidden_size
layer_args += (ffn_hidden_size,)
layer_kwargs["bias"] = True
if opts.layer_type == te.LayerNormMLP:
layer_kwargs["seq_length"] = opts.seq_length
elif opts.layer_type == te.MultiheadAttention:
layer_args += (opts.num_heads,)
layer_kwargs["fuse_qkv_params"] = True
layer_kwargs["input_layernorm"] = True
elif opts.layer_type == te.TransformerLayer:
layer_args += (3 * hidden_size, opts.num_heads)
layer_kwargs["fuse_qkv_params"] = True
layer_kwargs["seq_length"] = opts.seq_length
return layer_args, layer_kwargs
def parse_fsdp_args():
parser = argparse.ArgumentParser(
description="Run Transformer Engine modules with the "
+ "torch.distributed.fsdp.FullyShardedDataParallel strategy."
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
default=False,
help="Print out information from all GPUs instead of only the root GPU-0.",
)
parser.add_argument("-b", "--batch-size", type=int, default=32, help="Input batch size.")
parser.add_argument("-s", "--seq-length", type=int, default=1048, help="Input sequence length.")
parser.add_argument(
"-n", "--num-heads", type=int, default=16, help="Number of attention heads."
)
parser.add_argument(
"-d",
"--head-dim",
type=int,
default=128,
help="Dimension of each attention head (number of KV channels).",
)
parser.add_argument(
"-i", "--num-iters", type=int, default=5, help="Number of dummy 'training' iterations."
)
parser.add_argument(
"-k",
"--num-layers",
type=int,
default=3,
help="Number of modules chained together with nn.Sequential.",
)
parser.add_argument(
"--layer-type",
type=te_layer,
default=te.TransformerLayer,
choices=list(te_layer_map.values()),
help="TE module type used to construct the test model.",
)
parser.add_argument("--seed", type=int, default=1234, help="PyTorch RNG seed.")
parser.add_argument(
"--profile-memory",
action="store_true",
help="Enable memory profiling via torch.profiler.profile().",
)
parser.add_argument(
"--profile-name", type=str, default=None, help="File path for memory profiling."
)
parser.add_argument(
"--checkpoint-layer",
type=te_layer,
default=None,
help="Recompute activations of the selected layer during the backward "
+ "pass instead of saving.",
)
parser.add_argument(
"--no-fp8",
action="store_true",
default=False,
help="Disables the te.fp8_autocast() context.",
)
parser.add_argument(
"--no-defer-init",
action="store_true",
help="Defer module parameter initialization until after FSDP sharding.",
)
parser.add_argument(
"--no-te-fsdp",
action="store_true",
help="Disable sharding of intermediate/activation tensors in TE modules.",
)
parser.add_argument(
"--dtype",
type=torch_dtype,
default=torch.bfloat16,
help="Data type for input tensor and Transformer Engine module parameters.",
)
return parser.parse_args()
def dist_print(text, all_ranks=False, no_new_line=False):
if LOCAL_RANK == 0 or all_ranks:
end = "" if no_new_line else "\n"
print(f"[GPU-{LOCAL_RANK}] " + text, end=end)
def train(opts):
# Initialize torch.distributed global process group
dist.init_process_group(backend="nccl")
torch.cuda.set_device(LOCAL_RANK)
dist_print(f"WORLD_SIZE = {WORLD_SIZE}")
torch.manual_seed(opts.seed)
# Construct a simple homogeneous model (only one layer type) with NO PARALLELISM
layer_args, layer_kwargs = get_layer_args(opts)
if opts.num_layers > 1:
te_layer_list = []
for i in range(opts.num_layers):
if opts.layer_type in [te.MultiheadAttention, te.TransformerLayer]:
layer_kwargs["layer_number"] = i + 1
te_layer_list.append(opts.layer_type(*layer_args, **layer_kwargs))
te_model = nn.Sequential(*te_layer_list)
else:
# Single layer model
te_model = opts.layer_type(*layer_args, **layer_kwargs)
# Print out allocated device memory before the model parameters are sharded by FSDP
pre_mem_use = torch.cuda.memory_allocated(device=f"cuda:{LOCAL_RANK}") * 1e-6
dist_print(f"Pre-FSDP memory use = {pre_mem_use}MiB")
# Wrap the model with FSDP
# NOTE: The TE model itself has no inherent parallelism. FSDP shards model parameters and
# controls all communication.
all_gpus = dist.new_group(backend="nccl")
fsdp_wrap_policy = always_wrap_policy
if opts.layer_type == te.TransformerLayer:
# NOTE: FSDP causes illegal memory access without this special policy for Transformers
fsdp_wrap_policy = partial(
transformer_auto_wrap_policy, transformer_layer_cls={te.TransformerLayer}
)
te_model = FullyShardedDataParallel(
te_model,
process_group=all_gpus,
use_orig_params=True,
mixed_precision=MixedPrecision(
param_dtype=opts.dtype,
reduce_dtype=torch.float32,
),
auto_wrap_policy=fsdp_wrap_policy,
)
if opts.checkpoint_layer is not None:
# Recompute the activations of the selected layer during the backward pass instead of
# saving them during the forward pass
apply_fsdp_checkpointing(te_model, blocks=opts.checkpoint_layer)
elif not opts.no_te_fsdp:
# Prepare TE modules to shard internal buffers that FSDP cannot shard on its own
prepare_te_modules_for_fsdp(te_model)
# Print out allocated device memory after the model parameters are sharded
post_mem_use = torch.cuda.memory_allocated(device=f"cuda:{LOCAL_RANK}") * 1e-6
dist_print(f"Post-FSDP memory use = {post_mem_use}MiB")
dist_print(f"FSDP-Wrapped + Checkpointed TE Model:\n{te_model}")
# Fp8 setup for TE
fp8_format = Format.HYBRID
fp8_recipe = DelayedScaling(fp8_format=fp8_format, amax_history_len=32, amax_compute_algo="max", fp8_dpa=True)
# Optimizer must be created after the model is wrapped in FSDP and the parameters are sharded
optim = torch.optim.Adam(te_model.parameters(), lr=0.0001)
# Profile memory use
if opts.profile_memory:
torch.cuda.memory._record_memory_history(max_entries=100000)
else:
torch.cuda.reset_peak_memory_stats()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start.record()
for i in range(1):
# Generate a random input batch
x = torch.rand(
opts.seq_length,
opts.batch_size,
opts.num_heads * opts.head_dim,
dtype=opts.dtype,
device="cuda",
)
# fp8_autocast needs to be given the FSDP process group for amax reductions
with te.fp8_autocast(enabled=not opts.no_fp8, fp8_recipe=fp8_recipe, fp8_group=all_gpus):
y = te_model(x)
loss = y.sum()
# calculate gradient and take training step outside the fp8_autocast context
loss.backward()
optim.step()
optim.zero_grad(set_to_none=True)
del x
if opts.profile_memory:
torch.cuda.memory._dump_snapshot(f"gpu{LOCAL_RANK}_{opts.profile_name}.pickle")
torch.cuda.memory._record_memory_history(enabled=None)
else:
end.record()
torch.cuda.synchronize()
peak_mem = torch.cuda.memory_summary()
train_time = start.elapsed_time(end) / 1000.0
dist_print(f"Training Time: {train_time}s")
dist_print(f"Avg. Iter. Time: {train_time / opts.num_iters}s")
dist_print(peak_mem)
# Run with:
# torchrun --nnodes=1 --nproc-per-node=$(nvidia-smi -L | wc -l) test_fsdp.py --defer-init
if __name__ == "__main__":
args = parse_fsdp_args()
train(args)
we will get 1070 MiB
in current allocated memory.
- apply fix and run again
we will get 290920 KiB
in current allocated memory.
Expected behavior
no memory leak.
Environment overview (please complete the following information)
- Environment location: docker
- Method of Transformer Engine install: ngc docker pytorch 25.06
Environment details
ngc docker pytorch 25.06
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working