-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathdataloaders.py
156 lines (121 loc) · 4.65 KB
/
dataloaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import sys
import copy
from glob import glob
import math
import os
import torch
from torch.utils.data import DataLoader
from dataloading.datasets import imageDataset
import nvvl
class NVVL():
def __init__(self, frames, is_cropped, crop_size, root,
batchsize=1, device_id=0,
shuffle=False, distributed=False, fp16=False):
self.root = root
self.batchsize = batchsize
self.shuffle = shuffle
self.distributed = distributed
self.frames = frames
self.device_id = device_id
self.is_cropped = is_cropped
self.crop_size = crop_size
self.files = glob(os.path.join(self.root, '*.mp4'))
if len(self.files) < 1:
print(("[Error] No video files in %s" % (self.root)))
raise LookupError
if fp16:
tensor_type = 'half'
else:
tensor_type = 'float'
self.image_shape = nvvl.video_size_from_file(self.files[0])
height = max(self.image_shape.height, self.crop_size[0])
width = max(self.image_shape.width, self.crop_size[1])
# Frames are enforced to be mod64 in each dimension
# as required by FlowNetSD convolutions
height = int(math.floor(height/64.)*64)
width = int(math.floor(width/64.)*64)
processing = {"input" : nvvl.ProcessDesc(type=tensor_type,
height=height,
width=width,
random_crop=self.is_cropped,
random_flip=False,
normalized=False,
color_space="RGB",
dimension_order="cfhw",
index_map=[0, 1, 2])}
dataset = nvvl.VideoDataset(self.files,
sequence_length=self.frames,
device_id=self.device_id,
processing=processing)
self.loader = nvvl.VideoLoader(dataset,
batch_size=self.batchsize,
shuffle=self.shuffle,
distributed=self.distributed)
def __len__(self):
return len(self.loader)
def __iter__(self):
return iter(self.loader)
def get_loader(args):
if args.loader == 'pytorch':
dataset = imageDataset(
args.frames,
args.is_cropped,
args.crop_size,
os.path.join(args.root, 'train'),
args.batchsize,
args.world_size)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
train_loader = DataLoader(
dataset,
batch_size=args.batchsize,
shuffle=(sampler is None),
num_workers=10,
pin_memory=True,
sampler=sampler,
drop_last=True)
effective_bsz = args.batchsize * float(args.world_size)
train_batches = math.ceil(len(dataset) / float(effective_bsz))
dataset = imageDataset(
args.frames,
args.is_cropped,
args.crop_size,
os.path.join(args.root, 'val'),
args.batchsize,
args.world_size)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
val_loader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=True,
sampler=sampler,
drop_last=True)
val_batches = math.ceil(len(dataset) / float(args.world_size))
elif args.loader == 'NVVL':
train_loader = NVVL(
args.frames,
args.is_cropped,
args.crop_size,
os.path.join(args.root, 'train'),
batchsize=args.batchsize,
shuffle=True,
distributed=True,
device_id=args.rank % 8,
fp16=args.fp16)
train_batches = len(train_loader)
val_loader = NVVL(
args.frames,
args.is_cropped,
args.crop_size,
os.path.join(args.root, 'val'),
batchsize=1,
shuffle=True,
distributed=True,
device_id=args.rank % 8,
fp16=args.fp16)
val_batches = len(val_loader)
sampler = None
else:
raise ValueError('%s is not a valid option for --loader' % args.loader)
return train_loader, train_batches, val_loader, val_batches, sampler