-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
296 lines (233 loc) · 9.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
from torchvision import datasets, transforms
from skimage import io, transform
from scipy.io import loadmat
from scipy.misc import imresize, imsave
import numpy as np
import math
from PIL import Image
from models import ResNet34RefineNet1
from dataset import load_dataset_ADE20K, load_dataset
use_cuda = True
colors = None
def setting(args) :
data = args['data']
size = args['imgSize']
batch_size = args['batch']
lr = args['lr']
epoch = args['epoch']
if 'ADE20K' in data :
dataset = load_dataset_ADE20K(args,img_dim=size)
elif 'CamVid' in data :
dataset = load_dataset(args,img_dim=size,data=args['data'])
colors = dataset.ilabel2color
# Data loader
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True)
# Model :
img_dim = size
img_depth = 3
#img_depths=[int(img_dim/8),int(img_dim/4),int(img_dim/2),int(img_dim)]
conv_dim = args['conv_dim']
global use_cuda
batch_size = 8
semantic_labels_nbr = 150
refinenet = ResNet34RefineNet1(img_dim_in=img_dim, img_depth_in=img_depth,conv_dim=conv_dim,use_cuda=use_cuda,semantic_labels_nbr=semantic_labels_nbr,use_batch_norm=args['use_batch_norm'])
frompath = True
print(refinenet)
# LOADING :
path = 'SceneParsing--img{}-lr{}-conv{}'.format(img_dim,lr,conv_dim)
if args['use_batch_norm'] :
path += '-batch_norm'
if not os.path.exists( './data/{}/'.format(path) ) :
os.mkdir('./data/{}/'.format(path))
if not os.path.exists( './data/{}/reconst_images/'.format(path) ) :
os.mkdir('./data/{}/reconst_images/'.format(path))
SAVE_PATH = './data/{}'.format(path)
if frompath :
try :
lp =os.path.join(SAVE_PATH,'best')
refinenet.load(path=lp)
print('NET LOADING : OK.')
except Exception as e :
print('EXCEPTION : NET LOADING : {}'.format(e) )
try :
lp = os.path.join(SAVE_PATH,'temp')
refinenet.load(path=lp)
print('temporary NET LOADING : OK.')
except Exception as e :
print('EXCEPTION : temporary NET LOADING : {}'.format(e) )
# OPTIMIZER :
#optimizer = torch.optim.Adam( refinenet.parameters(), lr=lr)
optimizer = torch.optim.Adagrad( refinenet.parameters(), lr=lr)
if args['train'] :
train_model(refinenet,data_loader, optimizer, SAVE_PATH,path,args,nbr_epoch=args['epoch'],batch_size=args['batch'],offset=args['offset'])
def visualize_reconst_label(reconst,semantic_labels_nbr=150) :
batch_size = reconst.size()[0]
nbr_labels = reconst.size()[1]
imgs = []
for i in range(batch_size) :
img = reconst[i].float()
img = (img-img.mean())/img.std()
labels = img * 255.0
imgs.append(labels.unsqueeze(0) )
imgs = torch.cat(imgs, dim=0)
return imgs
def visualize_reconst(reconst,semantic_labels_nbr=150) :
batch_size = reconst.size()[0]
nbr_labels = reconst.size()[1]
dim = reconst.size()[2]
imgs = []
for i in range(batch_size) :
img = reconst[i]
img = img.max(0)[1].float().view((1,dim,dim))
img = (img-img.mean())/img.std()
labels = img * 255.0
imgs.append(labels.unsqueeze(0) )
imgs = torch.cat(imgs, dim=2)
return imgs
def colorEncode(labelmap, colors):
labelmap = labelmap.astype('int')
labelmap_set = set( labelmap.flatten() )
labelmap_rgb = np.zeros((labelmap.shape[0], labelmap.shape[1], 3),dtype=np.uint8)
for label in labelmap_set:
if label < 0:
continue
labelmap_rgb += (labelmap == label)[:, :, np.newaxis] * np.tile(colors[label],(labelmap.shape[0], labelmap.shape[1], 1))
return labelmap_rgb
def visualize(batch_data, pred, args,path,epoch=0,colors=None):
if colors is None :
colors = loadmat('./color150.mat')['colors']
imgs = batch_data['image']
segs = batch_data['label']
infos = batch_data['info']
for j in range(len(infos)):
img = imgs[j].clone()
for t,m,s in zip(img, [0.229, 0.224, 0.225], [0.485, 0.456, 0.406]) :
t.mul_(m).add_(s)
img = (img.numpy().transpose((1, 2, 0)) * 255).astype(np.uint8)
img = imresize(img, (args['imgSize'], args['imgSize']),interp='bilinear')
# segmentation
lab = segs[j].numpy()
lab_color = colorEncode(lab, colors)
lab_color = imresize(lab_color, (args['imgSize'], args['imgSize']),interp='nearest')
# prediction
pred_ = np.argmax(pred.data.cpu()[j].numpy(), axis=0)
pred_color = colorEncode(pred_, colors)
pred_color = imresize(pred_color, (args['imgSize'], args['imgSize']),interp='nearest')
# aggregate images and save
im_vis = np.concatenate((img, lab_color, pred_color),axis=1).astype(np.uint8)
imsave(os.path.join( path,'{}-{}'.format(epoch,infos[j].replace('/', '_').replace('.jpg', '.png')) ), im_vis)
def train_model(refinenet,data_loader, optimizer, SAVE_PATH,path,args,nbr_epoch=100,batch_size=32, offset=0, stacking=False) :
global use_cuda
global colors
img_depth=refinenet.img_depth
pred_depth = refinenet.semantic_labels_nbr
pred_dim = args['segSize']
img_dim = refinenet.img_dim_in
data_iter = iter(data_loader)
iter_per_epoch = len(data_loader)
# Debug :
sample = next(data_iter)
fixed_sample = sample
fixed_x = sample['image']
fixed_x = fixed_x.view( (-1, img_depth, img_dim, img_dim) )
fixed_seg = sample['label'].view( (-1, 1, pred_dim, pred_dim) )
fixed_seg_norm = visualize_reconst_label(fixed_seg)
torchvision.utils.save_image(fixed_x.cpu(), './data/{}/real_images.png'.format(path))
torchvision.utils.save_image(fixed_seg_norm, './data/{}/real_seg.png'.format(path))
fixed_x = Variable(fixed_x.view(fixed_x.size(0), img_depth, img_dim, img_dim)).float()
if use_cuda :
fixed_x = fixed_x.cuda()
best_loss = None
best_model_wts = refinenet.state_dict()
for epoch in range(nbr_epoch):
epoch_loss = 0.0
for i, sample in enumerate(data_loader):
images = sample['image'].float()
labels = sample['label']
# Save the reconstructed images
if i % 100 == 0 :
reconst_images_or = refinenet(fixed_x)
reconst_images = reconst_images_or.cpu().data
reconst_images = visualize_reconst(reconst_images)
reconst_images = reconst_images.view(-1, 1, pred_dim, pred_dim)
orimg = fixed_seg_norm.view(-1, 1, pred_dim, pred_dim)
ri = torch.cat( [orimg, reconst_images], dim=2)
torchvision.utils.save_image(ri,'./data/{}/reconst_images/{}.png'.format(path,(epoch+offset+1) ) )
visualize(fixed_sample, reconst_images_or,args,path=SAVE_PATH,epoch=epoch+offset+1,colors=colors)
lp = os.path.join(SAVE_PATH,'temp')
refinenet.save(path=lp)
#images = Variable( (images.view(-1, img_depth,img_dim, img_dim) ), volatile=False )#.float()
images = Variable( images, volatile=False )#.float()
labels = Variable( labels, volatile=False )#.float()
#labels = Variable( (labels.view(-1, pred_depth,pred_dim, pred_dim) ) )#.float()
if use_cuda :
images = images.cuda()
labels = labels.cuda()
pred = refinenet(images)
# Compute :
#reconstruction loss :
reconst_loss = nn.NLLLoss2d(ignore_index=-1)( pred, labels)
# TOTAL LOSS :
total_loss = reconst_loss
# Backprop + Optimize :
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
epoch_loss += total_loss.cpu().data[0]
if i % 10 == 0:
print ("Epoch[%d/%d], Step [%d/%d], Total Loss: %.4f, "
"Reconst Loss: %.4f "
%(epoch+1, nbr_epoch, i+1, iter_per_epoch, total_loss.data[0],
reconst_loss.data[0]) )
if best_loss is not None :
print("Epoch Loss : {} / Best : {}".format(epoch_loss, best_loss))
if best_loss is None :
#first validation : let us set the initialization but not save it :
best_loss = epoch_loss
if epoch_loss < best_loss:
best_loss = epoch_loss
lp = os.path.join(SAVE_PATH,'best')
refinenet.save(path=lp)
lp = os.path.join(SAVE_PATH,'temp')
refinenet.save(path=lp)
if __name__ == '__main__' :
import argparse
parser = argparse.ArgumentParser(description='RefineNet')
parser.add_argument('--train',action='store_true',default=False)
parser.add_argument('--evaluate',action='store_true',default=False)
parser.add_argument('--offset', type=int, default=0)
parser.add_argument('--batch', type=int, default=32)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--conv_dim', type=int, default=64)
#parser.add_argument('--data', type=str, default='ADE20K')
parser.add_argument('--data', type=str, default='CamVid')
parser.add_argument('--use_batch_norm', action='store_true', default=False)
'''
parser.add_argument('--list_train', type=str, default='./SceneParsing/ADE20K_object150_train.txt')
parser.add_argument('--list_val', type=str, default='./SceneParsing/ADE20K_object150_val.txt')
parser.add_argument('--root_img', type=str, default='./SceneParsing/images')
parser.add_argument('--root_seg', type=str, default='./SceneParsing/annotations')
'''
parser.add_argument('--list_train', type=str, default='./CamVid/CamVid_train.txt')
parser.add_argument('--list_val', type=str, default='./CamVid/CamVid_val.txt')
parser.add_argument('--root_img', type=str, default='./CamVid/images')
parser.add_argument('--root_seg', type=str, default='./CamVid/annotations')
parser.add_argument('--imgSize', default=384, type=int,help='input image size')
parser.add_argument('--segSize', default=96, type=int,help='output image size')
args = vars(parser.parse_args())
if 'ADE20K' in args['data'] :
args['list_train'] = './SceneParsing/ADE20K_object150_train.txt'
args['list_val'] = './SceneParsing/ADE20K_object150_val.txt'
args['root_img'] = './SceneParsing/images'
args['root_seg'] = './SceneParsing/annotations'
print(args)
setting(args)