|
1 | 1 | """
|
2 |
| -IgorProIO Demo |
3 |
| -=========================== |
| 2 | +IgorProIO Demo (BROKEN) |
| 3 | +======================= |
4 | 4 |
|
5 | 5 | """
|
6 | 6 |
|
|
17 | 17 | # Downloaded from Human Brain Project Collaboratory
|
18 | 18 | # Digital Reconstruction of Neocortical Microcircuitry (nmc-portal)
|
19 | 19 | # http://microcircuits.epfl.ch/#/animal/8ecde7d1-b2d2-11e4-b949-6003088da632
|
20 |
| - |
21 |
| - |
22 |
| -datafile_url = "https://microcircuits.epfl.ch/data/released_data/B95.zip" |
23 |
| -filename_zip = "B95.zip" |
24 |
| -filename = "grouped_ephys/B95/B95_Ch0_IDRest_107.ibw" |
25 |
| -urlretrieve(datafile_url, filename_zip) |
26 |
| - |
27 |
| -zip_ref = zipfile.ZipFile(filename_zip) # create zipfile object |
28 |
| -zip_ref.extract(path=".", member=filename) # extract file to dir |
29 |
| -zip_ref.close() |
30 |
| - |
31 |
| -###################################################### |
32 |
| -# Once we have our data we can use `get_io` to find an |
33 |
| -# io (Igor in this case). Then we read the analogsignals |
34 |
| -# Finally we will make some nice plots |
35 |
| -reader = get_io(filename) |
36 |
| -signal = reader.read_analogsignal() |
37 |
| -plt.plot(signal.times, signal) |
38 |
| -plt.xlabel(signal.sampling_period.dimensionality) |
39 |
| -plt.ylabel(signal.dimensionality) |
40 |
| - |
41 |
| -plt.show() |
| 20 | +# NOTE: this dataset is not found as the link is broken. |
| 21 | + |
| 22 | +# datafile_url = "https://microcircuits.epfl.ch/data/released_data/B95.zip" |
| 23 | +# filename_zip = "B95.zip" |
| 24 | +# filename = "grouped_ephys/B95/B95_Ch0_IDRest_107.ibw" |
| 25 | +# urlretrieve(datafile_url, filename_zip) |
| 26 | + |
| 27 | +# zip_ref = zipfile.ZipFile(filename_zip) # create zipfile object |
| 28 | +# zip_ref.extract(path=".", member=filename) # extract file to dir |
| 29 | +# zip_ref.close() |
| 30 | + |
| 31 | +# ###################################################### |
| 32 | +# # Once we have our data we can use `get_io` to find an |
| 33 | +# # io (Igor in this case). Then we read the analogsignals |
| 34 | +# # Finally we will make some nice plots |
| 35 | +# reader = get_io(filename) |
| 36 | +# signal = reader.read_analogsignal() |
| 37 | +# plt.plot(signal.times, signal) |
| 38 | +# plt.xlabel(signal.sampling_period.dimensionality) |
| 39 | +# plt.ylabel(signal.dimensionality) |
| 40 | + |
| 41 | +# plt.show() |
0 commit comments