|
15 | 15 | "cell_type": "markdown",
|
16 | 16 | "metadata": {},
|
17 | 17 | "source": [
|
18 |
| - "# AutoML loop\n", |
| 18 | + "## AutoML loop\n", |
19 | 19 | "\n",
|
20 | 20 | "The step AutoML is a step that can execute any Automatic Machine Learning Algorithms."
|
21 | 21 | ]
|
|
24 | 24 | "cell_type": "markdown",
|
25 | 25 | "metadata": {},
|
26 | 26 | "source": [
|
27 |
| - "## 1. Define your pipeline\n", |
| 27 | + "### 1. Define your pipeline\n", |
28 | 28 | "\n",
|
29 | 29 | "Consider multiple sklearn classifiers that each have their own hyperparms: "
|
30 | 30 | ]
|
|
102 | 102 | "cell_type": "markdown",
|
103 | 103 | "metadata": {},
|
104 | 104 | "source": [
|
105 |
| - "## 2. Choose a validation splitter\n", |
| 105 | + "### 2. Choose a validation splitter\n", |
106 | 106 | "\n",
|
107 | 107 | "Let's pick the [ValidationSplitter](https://www.neuraxle.org/stable/api/neuraxle.metaopt.auto_ml.html?highlight=validationsplitter#neuraxle.metaopt.auto_ml.ValidationSplitter) which is enough for most machine learning problems:"
|
108 | 108 | ]
|
|
131 | 131 | "cell_type": "markdown",
|
132 | 132 | "metadata": {},
|
133 | 133 | "source": [
|
134 |
| - "## 3. Define a the main scoring metric with [ScoringCallback](https://www.neuraxle.org/stable/api/neuraxle.metaopt.callbacks.html?highlight=scoringcallback#neuraxle.metaopt.callbacks.ScoringCallback)\n", |
| 134 | + "### 3. Define a the main scoring metric with [ScoringCallback](https://www.neuraxle.org/stable/api/neuraxle.metaopt.callbacks.html?highlight=scoringcallback#neuraxle.metaopt.callbacks.ScoringCallback)\n", |
135 | 135 | "\n",
|
136 | 136 | "Let's pick the accuracy score as our scoring metric: "
|
137 | 137 | ]
|
|
158 | 158 | "cell_type": "markdown",
|
159 | 159 | "metadata": {},
|
160 | 160 | "source": [
|
161 |
| - "## 4. Add metric callbacks with [MetricCallback](https://www.neuraxle.org/stable/api/neuraxle.metaopt.callbacks.html?highlight=metriccallback#neuraxle.metaopt.callbacks.MetricCallback) (optional)\n", |
| 161 | + "### 4. Add metric callbacks with [MetricCallback](https://www.neuraxle.org/stable/api/neuraxle.metaopt.callbacks.html?highlight=metriccallback#neuraxle.metaopt.callbacks.MetricCallback) (optional)\n", |
162 | 162 | "\n",
|
163 | 163 | "Let's add sklearn f1_score as an additional metric callback: "
|
164 | 164 | ]
|
|
191 | 191 | "cell_type": "markdown",
|
192 | 192 | "metadata": {},
|
193 | 193 | "source": [
|
194 |
| - "## 5. Select an hyperparams repository \n", |
| 194 | + "### 5. Select an hyperparams repository \n", |
195 | 195 | "\n",
|
196 | 196 | "For the sake of this example, let's pick the [InMemoryHyperparamsRepository](https://www.neuraxle.org/stable/api/neuraxle.metaopt.auto_ml.html?highlight=inmemoryhyperparamsrepository#neuraxle.metaopt.auto_ml.InMemoryHyperparamsRepository) because we don't need to persist trial files:"
|
197 | 197 | ]
|
|
237 | 237 | "cell_type": "markdown",
|
238 | 238 | "metadata": {},
|
239 | 239 | "source": [
|
240 |
| - "## 6. Select an hyperparams optimizer \n", |
| 240 | + "### 6. Select an hyperparams optimizer \n", |
241 | 241 | "\n",
|
242 | 242 | "Let's pick the infamous Tree Parzen Estimator algorithm:"
|
243 | 243 | ]
|
|
274 | 274 | "cell_type": "markdown",
|
275 | 275 | "metadata": {},
|
276 | 276 | "source": [
|
277 |
| - "## 7. Create, and launch AutoML loop\n", |
| 277 | + "### 7. Create, and launch AutoML loop\n", |
278 | 278 | "\n",
|
279 | 279 | "Create the AutoML step that will execute the training loop:"
|
280 | 280 | ]
|
|
312 | 312 | "cell_type": "markdown",
|
313 | 313 | "metadata": {},
|
314 | 314 | "source": [
|
315 |
| - "### Run 10 trials " |
| 315 | + "## Run 10 trials " |
316 | 316 | ]
|
317 | 317 | },
|
318 | 318 | {
|
|
2665 | 2665 | "cell_type": "markdown",
|
2666 | 2666 | "metadata": {},
|
2667 | 2667 | "source": [
|
2668 |
| - "### Get best model, and predict" |
| 2668 | + "## Get best model, and predict" |
2669 | 2669 | ]
|
2670 | 2670 | },
|
2671 | 2671 | {
|
|
0 commit comments