-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
351 lines (274 loc) · 11 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# analysis.py
# This is my code used for the analysis of Fisher's Iris data set
# Author: Noemi Diaz
# Imports and libraries
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# STEP 1: Load and save dataset.
# Loading Iris data from seaborn
df = pd.read_csv ("https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv")
# Download and save the Iris dataset to a file in the repository
df.to_csv("iris.csv", index=False)
# STEP 2. Inspect types of variables.
# Types of variables
print(df.dtypes)
# STEP 3.Examining data set.
# Have a look the data.
print(df)
# Describe the data set.
print(df.describe())
# Prints the number of rows and columns in the dataset: 150 rows and 5 columns.
print(df.shape)
# Look at the first row.
print (df.iloc [0])
# Analysis of the species
print (df ["species"])
# Count the number of Iris of each species type
print (df["species"].value_counts())
# Calculate the measure mean of numerical variables (float)
print(df[["sepal_length","sepal_width", "petal_length", "petal_width"]].mean())
# STEP 4. Generate and save variable summaries to a text file.
# Create summary for numerical variables (float64)
numerical_summary = df.describe(include=[np.number]) # 'Sepal length', 'sepal width', 'petal length', 'petal width' variables
# Create summary for categorical variables (object)
categorical_summary = df.describe(include=[object]) # 'Species' variable
# Write the summaries to a text file
with open('Summary_variable.txt', 'w') as file:
file.write("Numerical Variables Summary:\n")
file.write(numerical_summary.to_string())
file.write("\n\nCategorical Variables Summary:\n")
file.write(categorical_summary.to_string())
# STEP 5. Creating a Histogram for each variable.
# Variable 1: Species (object). Each type is equally represented (5 Iris setosa, 50 Iris virginica and 50 Iris versicolor).It is a balanced data set.
# Variable X is species.
spe = df['species']
# Show
print(spe)
#'species' is the variable to plot
spe = df['species']
# Plotting the histogram
plt.hist(spe, bins=5, color='Thistle', edgecolor='black')
plt.xlabel('species')
plt.ylabel('')
plt.title('Histogram of Iris species')
# Save the plot to a file (in this case png file)
plt.savefig('species_histogram.png')
# Show the plot
plt.show()
# Variable 2: Sepal length (float).
# Variable X is sepal length.
sepallen = df['sepal_length']
# Show
print(sepallen)
#'sepal length' is the variable to plot
sepallen = df['sepal_length']
# Plotting the histogram
plt.hist(sepallen, bins=5, color='rebeccapurple', edgecolor='black')
plt.xlabel('sepal length')
plt.ylabel('')
plt.title('Histogram of Iris Sepal Length')
# Save the plot to a file (in this case png file)
plt.savefig('sepal_length_histogram.png')
# Show the plot
plt.show()
# Variable 3: Sepal width (float)
# Variable X is sepal width.
sepalwd = df['sepal_width']
# Show
print(sepalwd)
#'sepal width' is the variable to plot
sepalwd = df['sepal_width']
# Plotting the histogram
plt.hist(sepalwd, bins=5, color='rebeccapurple', edgecolor='black')
plt.xlabel('sepal width')
plt.ylabel('')
plt.title('Histogram of Iris Sepal width')
# Save the plot to a file (in this case png file)
plt.savefig('sepal_width_histogram.png')
# Show the plot
plt.show()
# Variable 4: Petal length (float).
# Variable X is petal length.
petallen = df['petal_length']
# Show
print(petallen)
#'petal length' is the variable to plot
petallen = df['petal_length']
# Plotting the histogram
plt.hist(petallen, bins=5, color='rebeccapurple', edgecolor='black')
plt.xlabel('petal length')
plt.ylabel('')
plt.title('Histogram of Iris Petal length')
# Save the plot to a file (in this case png file)
plt.savefig('petal_length_histogram.png')
# Show plot
plt.show()
# Variable 5 : Petal width (float)
# Variable X is petal width.
petalwd = df['petal_width']
# Show
print(petalwd)
#'petal width' is the variable to plot
petalwd = df['petal_width']
# Plotting the histogram
plt.hist(petalwd, bins=5, color='rebeccapurple', edgecolor='black')
plt.xlabel('petal width')
plt.ylabel('')
plt.title('Histogram of Iris Petal width')
# Save the plot to a file (in this case png file)
plt.savefig('petal_width_histogram.png')
# Show the plot
plt.show()
# STEP 6. Creating a Scatter plot of each of pair of variables taking into account types of species.
# Scatter Plot 1: Sepal Length vs Sepal Width.
# Extract data for sepal length, sepal width and species.
sepallen = df['sepal_length']
sepalwd = df['sepal_width']
spe = df['species'].unique()
# Define colors and markers for each species in the plot
colors = ['indigo', 'green', 'yellow'] # Different colors for categorize Iris
markers = ['o', '^', 's'] # Different markers for categorize Iris
# Create scatter plot for each species
plt.figure(figsize=(10, 8))
for i, species in enumerate(spe):
species_data = df[df['species'] == species]
plt.scatter(species_data['sepal_length'], species_data['sepal_width'], color=colors[i], marker=markers[i], label=species, alpha=0.7)
# Decorative details in the plot
plt.title('Scatter Plot of Sepal Length vs Sepal Width by Species')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.legend()
# Save the plot to a file (in this case png file)
plt.savefig('Sepal_Length_Sepal_Width_Scatter_Plot.png')
# Show the plot.
plt.show()
# Scatter Plot 2: Petal Length vs Petal Width.
# Extract data for petal length , petal width and species.
petallen = df['petal_length']
petalwd = df['petal_width']
spe = df['species'].unique()
# Define colors and markers for each species in the plot.
colors = ['indigo', 'green', 'yellow'] # Different colors for categorize Iris
markers = ['o', '^', 's'] # Different markers for categorize Iris
# Create scatter plot for each species
plt.figure(figsize=(10, 8))
for i, species in enumerate(spe):
species_data = df[df['species'] == species]
plt.scatter(species_data['petal_length'], species_data['petal_width'], color=colors[i], marker=markers[i], label=species, alpha=0.7)
# Decorative details in the plot
plt.title('Scatter Plot of Petal Length vs Petal Width by Species')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend()
# Save the plot to a file (in this case png file)
plt.savefig('Petal_Length_Petal_Width_Scatter_Plot.png')
# Show the plot.
plt.show()
# Scatter plot 3: Sepal Length vs Petal Length
# Extract data for sepal length, petal length and species.
sepallen = df['sepal_length']
petallen = df['petal_length']
spe = df['species'].unique()
# Define colors and markers for each species in the plot
colors = ['indigo', 'green', 'yellow'] # Different colors for categorize Iris
markers = ['o', '^', 's'] # Different markers for categorize Iris
# Create scatter plot for each species
plt.figure(figsize=(10, 8))
for i, species in enumerate(spe):
species_data = df[df['species'] == species]
plt.scatter(species_data['sepal_length'], species_data['petal_length'], color=colors[i], marker=markers[i], label=species, alpha=0.7)
# Decorative details in the plot
plt.title('Scatter Plot of Sepal Length vs Petal Length by Species')
plt.xlabel('Sepal Length')
plt.ylabel('Petal Length')
plt.legend()
# Save the plot to a file (in this case png file)
plt.savefig('Sepal_Length_Petal_Length_Scatter_Plot.png')
# Show the plot.
plt.show()
# Scatter plot 4: Sepal Length vs Petal Width
# Extract data for sepal length, petal width and species.
sepallen = df['sepal_length']
petalwd = df['petal_width']
spe = df['species'].unique()
# Define colors and markers for each species in the plot
colors = ['indigo', 'green', 'yellow'] # Different colors for categorize Iris
markers = ['o', '^', 's'] # Different markers for categorize Iris
# Create scatter plot for each species
plt.figure(figsize=(10, 8))
for i, species in enumerate(spe):
species_data = df[df['species'] == species]
plt.scatter(species_data['sepal_length'], species_data['petal_width'], color=colors[i], marker=markers[i], label=species, alpha=0.7)
# Decorative details in the plot
plt.title('Scatter Plot of Sepal Length vs Petal Width by Species')
plt.xlabel('Sepal Length')
plt.ylabel('Petal Width')
plt.legend()
# Save the plot to a file (in this case png file)
plt.savefig('Sepal_Length_Petal_Width_Scatter_Plot.png')
# Show the plot.
plt.show()
# Scatter plot 5: Sepal Width vs Petal Length
# Extract data for sepal width, petal length and species.
sepallen = df['sepal_width']
petallen = df['petal_length']
spe = df['species'].unique()
# Define colors and markers for each species in the plot
colors = ['indigo', 'green', 'yellow'] # Different colors for categorize Iris
markers = ['o', '^', 's'] # Different markers for categorize Iris
# Create scatter plot for each species
plt.figure(figsize=(10, 8))
for i, species in enumerate(spe):
species_data = df[df['species'] == species]
plt.scatter(species_data['sepal_width'], species_data['petal_length'], color=colors[i], marker=markers[i], label=species, alpha=0.7)
# Decorative details in the plot
plt.title('Scatter Plot of Sepal Width vs Petal Length by Species')
plt.xlabel('Sepal Width')
plt.ylabel('Petal Length')
plt.legend()
# Save the plot to a file (in this case png file)
plt.savefig('Sepal_Width_Petal_Length_Scatter_Plot.png')
# Show the plot.
plt.show()
# Scatter plot 6: Sepal Width vs Petal Width
# Extract data for sepal width, petal width and species.
sepallen = df['sepal_width']
petallen = df['petal_width']
spe = df['species'].unique()
# Define colors and markers for each species in the plot
colors = ['indigo', 'green', 'yellow'] # Different colors for categorize Iris
markers = ['o', '^', 's'] # Different markers for categorize Iris
# Create scatter plot for each species
plt.figure(figsize=(10, 8))
for i, species in enumerate(spe):
species_data = df[df['species'] == species]
plt.scatter(species_data['sepal_width'], species_data['petal_width'], color=colors[i], marker=markers[i], label=species, alpha=0.7)
# Decorative details in the plot
plt.title('Scatter Plot of Sepal Width vs Petal Width by Species')
plt.xlabel('Sepal Width')
plt.ylabel('Petal Width')
plt.legend()
# Save the plot to a file (in this case png file)
plt.savefig('Sepal_Width_Petal_Width_Scatter_Plot.png')
# Show the plot.
plt.show()
# STEP 7: Measure correlation coefficient.
# Calculate correlation coefficient for all pairwise combinations.
# Exclude all categorical (non-numeric) variables for correlation calculation, in this case 'Species' (object).
numeric_df = df.select_dtypes(include=['float64', 'int64'])
# Calculate correlation matrix.
correlation_matrix = numeric_df.corr().round (2) # rounding correlation matrix to 2 digits.
# Print correlation matrix.
print(correlation_matrix)
# Heat map.
# Generate a Heatmap to visualize the correlation matrix with all values obtained.
sns.heatmap(correlation_matrix, cmap='RdPu', annot=True) #annot=True are numeric values annotations onto heatmap cells.
# Adding Heat map tittle
plt.title('Heatmap Correlation Matrix')
# Save the plot to a file (in this case png file)
plt.savefig('Correlation_matrix_Heatmap.png')
# Show plot
plt.show()
# End