Skip to content

Files

Latest commit

e43d9d1 · Oct 25, 2024

History

History
189 lines (142 loc) · 5.05 KB

README.md

File metadata and controls

189 lines (142 loc) · 5.05 KB

PRCpy: A Python Package for Processing of Physical Reservoir Computing

PRCpy is a Python package designed to ease experimental data processing for physical reservoir computing.

Features

  • Data handling and preprocessing.
  • Customizable data processing pipelines for various research needs.

Installation

PRCpy requires Python 3.9 or later.

Using pip

pip install prcpy

Using Poetry

poetry add prcpy

Note

Latest release is always recommended.

PIP: pip install prcpy --upgrade
POERTY: poetry update prcpy

Check your version by running:

prcpy.__version__

General usage overview

  1. Define data path
  2. Define pre-processing parameters
  3. Create RC pipeline
  4. Define target and add to pipeline
  5. Define model for training
  6. Define RC parameters
  7. Run RC

Example:

import PRCpy

from prcpy.RC import Pipeline
from prcpy.TrainingModels.RegressionModels import define_Ridge
from prcpy.Maths.Target_functions import get_npy_data, generate_square_wave

Define data directory and processing parameters

Note: Data files must match the string specified by "prefix". See examples/data for example data files.

data_dir_path = "your/data/path"
prefix = "scan"
process_params = {
    "Xs": "Frequency",
    "Readouts": "Spectra",
    "remove_bg": False,
    "bg_fname": "background_data.txt",
    "smooth": False,
    "smooth_win": 51,
    "smooth_rank": 4,
    "cut_xs": False,
    "x1": 2,
    "x2": 5,
    "normalize_local": False,
    "normalize_global": False,
    "sample": False,
    "sample_rate": 13,
    "transpose": False
}

Create RC pipeline

rc_pipeline = Pipeline(data_dir_path, prefix, process_params)

Target generation

Transformation
num_periods = 10
length = rc_pipeline.get_df_length()
target_values = generate_square_wave(length,num_periods)
Forecasting
mg_path = "mackey_glass_t17.npy"
target_values = get_npy_data(mg_path, norm=True)
Add target to pipeline
rc_pipeline.define_target(target_values)

Define model

model_params = {
        "alpha": 1e-3,
        "fit_intercept": True,
        "copy_X": True,
        "max_iter": None,
        "tol": 0.0001,
        "solver": "auto",
        "positive": False,
        "random_state": None,
    }
    
model = define_Ridge(model_params)

Define RC parameters

Set "tau": 0 for transformation.

rc_params = {
        "model": model,
        "tau": 10,
        "test_size": 0.3,
        "error_type": "MSE"
    }

Run RC

rc_pipeline.run(rc_params)

Get results & reservoir metrics

results = rc_pipeline.get_rc_results()

rc_pipeline.define_input(target_values)
nl = rc_pipeline.get_non_linearity()
lmc = rc_pipeline.get_linear_memory_capacity()[0]

Authors & Maintainers

We are a neuromorphic computing division within the UCL Spintronics Group at London Centre for Nanotechnology, University College London, UK. For any queries about PRCpy, please contact Harry Youel (harry.youel.19@ucl.ac.uk) or Daniel Prestwood (daniel.prestwood.22@ucl.ac.uk).

Research enquries

For collaborations or research enquires, please contact Prof. Hide Kurebayashi.

Find out more on PRC

PRCpy

RC publications from the group

Research articles

Review/perspectives

Outreach

Recent PRC publications

TBA.

Contributing

Any community contributions are welcome. Please refer to the project's GitHub repository for contribution guidelines.