-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransformer_xl_model.py
143 lines (121 loc) · 4.63 KB
/
transformer_xl_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import torch
from fairseq.dataclass import FairseqDataclass
from fairseq.models import (
FairseqIncrementalDecoder,
FairseqLanguageModel,
register_model,
)
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from omegaconf import II
logger = logging.getLogger(__name__)
@dataclass
class TransformerXLConfig(FairseqDataclass):
# defaults come from the original Transformer-XL code
cutoffs: List[int] = field(default_factory=lambda: [20000, 40000, 200000])
d_model: int = 500
n_head: int = 10
d_head: int = 50
d_inner: int = 1000
div_val: int = 1
n_layer: int = 12
mem_len: int = 0
clamp_len: int = -1
same_length: bool = False
dropout: float = 0.0
dropatt: float = 0.0
checkpoint_activations: bool = False
offload_activations: bool = False
max_target_positions: int = II("task.max_target_positions")
@register_model("transformer_xl", dataclass=TransformerXLConfig)
class TransformerXLLanguageModel(FairseqLanguageModel):
@classmethod
def build_model(cls, cfg: TransformerXLConfig, task):
return cls(TransformerXLDecoder(cfg, task))
class TransformerXLDecoder(FairseqIncrementalDecoder):
def __init__(self, cfg, task):
try:
from transformers.models.transfo_xl import (
TransfoXLConfig,
TransfoXLLMHeadModel,
)
except ImportError:
from transformers.configuration_transfo_xl import TransfoXLConfig
from transformers.modeling_transfo_xl import TransfoXLLMHeadModel
super().__init__(task.target_dictionary)
self.cfg = cfg
# remove any cutoffs larger than the vocab size
cutoffs = [
cutoff for cutoff in cfg.cutoffs if cutoff < len(task.target_dictionary)
]
config = TransfoXLConfig(
vocab_size=len(task.target_dictionary),
cutoffs=cutoffs,
d_model=cfg.d_model,
d_embed=cfg.d_model,
n_head=cfg.n_head,
d_head=cfg.d_head,
d_inner=cfg.d_inner,
div_val=cfg.div_val,
n_layer=cfg.n_layer,
mem_len=cfg.mem_len,
clamp_len=cfg.clamp_len,
same_length=cfg.same_length,
dropout=cfg.dropout,
dropatt=cfg.dropatt,
)
logger.info(config)
self.model = TransfoXLLMHeadModel(config)
if cfg.checkpoint_activations or cfg.offload_activations:
for i in range(len(self.model.transformer.layers)):
self.model.transformer.layers[i] = checkpoint_wrapper(
self.model.transformer.layers[i],
offload_to_cpu=cfg.offload_activations,
)
# TODO: may save mem to wrap(layer.pos_ff.CoreNet[3])
self._mems = None
def forward(
self,
src_tokens,
src_lengths=None, # unused
incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
encoder_out=None,
):
if incremental_state is not None: # used during inference
mems = self.get_incremental_state(incremental_state, "mems")
src_tokens = src_tokens[:, -1:] # only keep the most recent token
else:
mems = self._mems
output = self.model(
input_ids=src_tokens,
mems=mems,
return_dict=False,
)
if len(output) >= 2:
if incremental_state is not None:
self.set_incremental_state(incremental_state, "mems", output[1])
else:
self._mems = output[1]
return (output[0],)
def max_positions(self):
return self.cfg.max_target_positions
def reorder_incremental_state(
self,
incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]],
new_order: torch.Tensor,
):
"""Reorder incremental state.
This will be called when the order of the input has changed from the
previous time step. A typical use case is beam search, where the input
order changes between time steps based on the selection of beams.
"""
mems = self.get_incremental_state(incremental_state, "mems")
if mems is not None:
new_mems = [mems_i.index_select(1, new_order) for mems_i in mems]
self.set_incremental_state(incremental_state, "mems", new_mems)