-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcelery_app.py
91 lines (74 loc) · 2.49 KB
/
celery_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import celery
from celery import signals
import torch
import torchvision
from torchvision.models.detection import MaskRCNN
from torchvision.models.detection.anchor_utils import AnchorGenerator
device = torch.device('cuda')
print(f"Device {device} is chosen")
def load_model():
backbone = torchvision.models.mobilenet_v2().features
backbone.out_channels = 1280
anchor_generator = AnchorGenerator(
sizes=((32, 642, 128, 256, 512,), ),
aspect_ratios=((0.5, 1.0, 2.0), ),
)
roi_pooler = torchvision.ops.MultiScaleRoIAlign(
featmap_names=['0'],
output_size=7,
sampling_ratio=2
)
mask_roi_pooler = torchvision.ops.MultiScaleRoIAlign(
featmap_names=['0'],
output_size=14,
sampling_ratio=2,
)
model = MaskRCNN(
backbone,
num_classes=2,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler,
mask_roi_pool=mask_roi_pooler,
)
model.eval()
model.to(device)
return model
class BaseTask(celery.Task):
def __init__(self) -> None:
super().__init__()
self._ai_model = None
# signals.worker_init.connect(self.on_worker_init)
def on_worker_init(self, *args, **kwargs):
print("Loading AI Model ...")
self._ai_model = load_model()
print("AI Model Loaded")
@property
def ai_model(self):
if self._ai_model is None:
self._ai_model = load_model()
return self._ai_model
@celery.shared_task(name='inference_model', bind=True, base=BaseTask)
def inference_model(self):
input_x = [torch.rand(3, 300, 400).to(
device), torch.rand(3, 500, 400).to(device)]
prediction = self.ai_model(input_x)
print('Hi, this is a inference function')
return str(type(prediction))
if __name__ == "__main__":
# this forces the application to use spawn instead of fork
os.environ["FORKED_BY_MULTIPROCESSING"] = "1"
if os.name != "nt":
from billiard import context
context._force_start_method("spawn")
print('Context is changed to SPAWN')
celery_app = celery.Celery(
'main_celery',
backend='redis://:Eyval@localhost:6379/1',
broker='redis://:Eyval@localhost:6379/1',
task_default_queue='AIWithCelery',
include=['celery_app']
)
# celery_app.task(name='inference_model', bind=True,
# base=BaseTask)(inference_model)
celery_app.start(['worker', '-l', 'INFO', '--concurrency', '2'])