Open
Description
Checklist
- 1. I have searched related issues but cannot get the expected help.
- 2. The bug has not been fixed in the latest version.
- 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
我使用 官方教程 对 internVL 2.5 8B 的模型进行微调, 使用 lmdeploy 进行serve 的时候出错,请问如何解决?, 出错的信息如下:
The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is ignored.
You are using a model of type internvl_chat to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
Traceback (most recent call last):
File "/mnt/zjqd/ts/sjz/envs/py311/bin/lmdeploy", line 8, in <module>
sys.exit(run())
^^^^^
File "/mnt/zjqd/ts/sjz/envs/py311/lib/python3.11/site-packages/lmdeploy/cli/entrypoint.py", line 39, in run
args.run(args)
File "/mnt/zjqd/ts/sjz/envs/py311/lib/python3.11/site-packages/lmdeploy/cli/serve.py", line 315, in api_server
backend = autoget_backend(args.model_path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/mnt/zjqd/ts/sjz/envs/py311/lib/python3.11/site-packages/lmdeploy/archs.py", line 40, in autoget_backend
turbomind_has = is_supported_turbomind(model_path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/mnt/zjqd/ts/sjz/envs/py311/lib/python3.11/site-packages/lmdeploy/turbomind/supported_models.py", line 113, in is_supported
llm_arch = cfg.llm_config.architectures[0]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: 'dict' object has no attribute 'architectures'
Reproduction
lmdeploy serve api_server internvl2_5_8b_dynamic_res_2nd_finetune_full
Environment
sys.platform: linux
Python: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA H100 80GB HBM3
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.4, V12.4.131
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
PyTorch: 2.6.0+cu124
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 12.4
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 90.1
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=2236df1770800ffea5697b11b0bb0d910b2e59e1, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.6.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.21.0+cu124
LMDeploy: 0.9.0+
transformers: 4.52.4
gradio: Not Found
fastapi: 0.115.12
pydantic: 2.11.7
triton: 3.2.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PXB PXB NODE NODE NODE SYS SYS SYS SYS 0-31,64-950 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 PXB PXB NODE NODE NODE SYS SYS SYS SYS 0-31,64-950 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE NODE PXB PXB SYS SYS SYS SYS 0-31,64-950 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE NODE NODE PXB PXB SYS SYS SYS SYS 0-31,64-950 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS PXB PXB NODE NODE 32-63,96-127 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS PXB PXB NODE NODE 32-63,96-127 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS NODE NODE PXB PXB 32-63,96-127 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS NODE NODE PXB PXB 32-63,96-127 1 N/A
NIC0 PXB PXB NODE NODE SYS SYS SYS SYS X PXB NODE NODE NODE SYS SYS SYS SYS
NIC1 PXB PXB NODE NODE SYS SYS SYS SYS PXB X NODE NODE NODE SYS SYS SYS SYS
NIC2 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE X NODE NODE SYS SYS SYS SYS
NIC3 NODE NODE PXB PXB SYS SYS SYS SYS NODE NODE NODE X PXB SYS SYS SYS SYS
NIC4 NODE NODE PXB PXB SYS SYS SYS SYS NODE NODE NODE PXB X SYS SYS SYS SYS
NIC5 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS SYS SYS SYS X PXB NODE NODE
NIC6 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS SYS SYS SYS PXB X NODE NODE
NIC7 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS SYS SYS SYS NODE NODE X PXB
NIC8 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS SYS SYS SYS NODE NODE PXB X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
Error traceback
Metadata
Metadata
Assignees
Labels
No labels