Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to fit the cell type proportion of spots in visium spatial transcriptome data? #7

Open
Feng-Zhang opened this issue Jan 6, 2023 · 0 comments

Comments

@Feng-Zhang
Copy link

Feng-Zhang commented Jan 6, 2023

How can I perform a variance stabilizing transformation on the proportions estimated by spacexr?
I have the weight matrix below, where row is spot id, column is cell type name, the number in the matrix is the proportion of cell types estimated by spacexr. The sum of each row should equal 1, and here is not since I didn't copy the complete matrix.

                          1            2            3            4            5            6            7
TAAGTTGTGAGGCC 2.292692e-01 3.005909e-05 3.005909e-05 3.005909e-05 3.670932e-01 8.926548e-02 3.005909e-05
GTGCCCCTATCCTG 6.675664e-05 6.675664e-05 6.675664e-05 6.675664e-05 1.318198e-01 6.675664e-05 6.675664e-05
ATGTGCCACATCGG 4.807096e-05 4.807096e-05 4.807096e-05 4.807096e-05 4.807096e-05 1.421878e-01 4.807096e-05
CCGCCGTCTCGATG 3.486809e-05 3.486809e-05 3.486809e-05 3.486809e-05 3.377137e-01 1.014989e-01 3.486809e-05
CAGCTCGTGCTTGA 7.590008e-05 5.721524e-02 7.590008e-05 7.590008e-05 8.041539e-02 5.677883e-01 7.590008e-05
GGCTGGCTGAGGCC 3.149211e-01 1.422552e-01 4.985062e-05 4.985062e-05 2.484134e-01 2.703381e-01 4.985062e-05
TAGGCTGAAGACTG 3.297390e-05 7.494110e-02 3.297390e-05 3.297390e-05 4.182647e-01 2.697740e-01 3.297390e-05
CTTCCGGCATGTCC 1.120751e-04 1.120751e-04 1.120751e-04 1.120751e-04 1.525209e-01 1.120751e-04 1.120751e-04
GCCCCCCATCTGCT 5.294217e-05 5.294217e-05 5.294217e-05 9.104908e-03 5.294217e-05 5.294217e-05 5.294217e-05
AGCTTATTACGTTG 2.840802e-01 1.751406e-01 7.671817e-05 7.671817e-05 5.297927e-02 3.203129e-01 7.671817e-05
AAGGTATCTCAACA 5.380602e-05 5.380602e-05 5.380602e-05 5.380602e-05 6.988223e-02 2.613118e-01 1.747145e-01
CGTTACACACCTCA 5.586827e-05 5.586826e-05 4.689468e-02 1.542028e-02 2.801799e-01 2.109863e-01 5.586827e-05
TGGTTGAGCGATCT 8.984323e-05 2.333192e-02 8.984323e-05 8.984322e-05 1.156254e-01 2.123683e-01 8.984323e-05
GTGGAACCAGCCAA 2.007825e-02 2.777721e-01 6.859269e-05 3.259486e-02 2.409382e-01 4.167652e-02 6.859269e-05
CGGCCGTGCCCACC 6.511133e-05 6.511133e-05 6.511133e-05 6.511133e-05 2.127825e-02 1.997856e-01 6.511133e-05
TTCTGGTTTCTGGC 1.322819e-04 6.351707e-02 1.322819e-04 1.322819e-04 1.415326e-01 1.322819e-04 1.005996e-01
CTGATTGTGCTCAT 2.495690e-01 8.105902e-02 9.274481e-05 9.274481e-05 1.988514e-01 2.882024e-01 9.274481e-05
CACATATGCCTCCT 6.145991e-05 6.145991e-05 6.145991e-05 1.072262e-01 6.145991e-05 1.820542e-01 1.421808e-02
TATCTGTGAAGGAC 6.533813e-05 6.533814e-05 6.533813e-05 6.533813e-05 1.564585e-01 6.533813e-05 6.533813e-05
TGACATATTCATCT 9.465732e-05 8.512554e-03 9.465732e-05 3.381593e-03 9.465732e-05 3.107101e-01 9.465732e-05
CGGCTGGCTCGACC 6.702389e-05 6.702389e-05 6.702389e-05 1.869455e-03 6.702389e-05 1.451687e-01 6.702389e-05
AAGGCTCTACATCA 3.417982e-05 3.417982e-05 3.417982e-05 3.417982e-05 4.057332e-01 2.507974e-01 3.417982e-05
TATGCCCAGGACAG 3.380197e-02 5.018601e-03 1.290414e-04 1.290414e-04 1.290414e-04 1.290414e-04 1.290414e-04
ATGAGTCCACATCT 7.904215e-05 7.904215e-05 7.904215e-05 6.282745e-03 1.597886e-01 3.748211e-01 7.904215e-05
ATCTTTCCTTCAAA 8.409195e-05 8.409195e-05 8.409195e-05 8.409195e-05 8.409195e-05 3.419672e-01 8.409195e-05
CTTTTGCTCCGGAA 7.613547e-05 7.613547e-05 7.613547e-05 7.613547e-05 7.613547e-05 4.174179e-01 1.912609e-02

By the way, would the scale.fac value largely affects the test results? In prop.list <- convertDataToList(sexprops,data.type="proportions", transform="logit", scale.fac=174684/20) vignette, scale.fac seems just equal the total number of cells divided by sample number, which is the mean number of cell for each samples rather than the exact vector of the total number of cells N for each sample.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant