-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmain_demo_13B.py
158 lines (124 loc) · 6.39 KB
/
main_demo_13B.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import gradio as gr
from fastapi import FastAPI
from ChatUniVi.conversation import conv_templates, Conversation
from ChatUniVi.demo import Chat
from ChatUniVi.constants import *
import os
from PIL import Image
import tempfile
import imageio
from decord import VideoReader, cpu
import shutil
app = FastAPI()
model_path = "Chat-UniVi/Chat-UniVi-13B" # model_path = [model path]
def save_image_to_local(image):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
image = Image.open(image)
image.save(filename)
return filename
def save_video_to_local(video_path):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
shutil.copyfile(video_path, filename)
return filename
def generate(image1, image2, video, textbox_in, first_run, state, state_, images_tensor):
flag = 1
if not textbox_in:
if len(state_.messages) > 0:
textbox_in = state_.messages[-1][1]
state_.messages.pop(-1)
flag = 0
else:
return "Please enter instruction"
image1 = image1 if image1 else "none"
image2 = image2 if image2 else "none"
video = video if video else "none"
if type(state) is not Conversation:
state = conv_templates[conv_mode].copy()
state_ = conv_templates[conv_mode].copy()
images_tensor = []
first_run = False if len(state.messages) > 0 else True
text_en_in = textbox_in.replace("picture", "image")
image_processor = handler.image_processor
if os.path.exists(image1):
images = [Image.open(image1)]
images_tensor.append(image_processor(images, return_tensors='pt')['pixel_values'][0].to(handler.model.device, dtype=torch.float16))
if os.path.exists(image2):
images = [Image.open(image2)]
images_tensor.append(image_processor(images, return_tensors='pt')['pixel_values'][0].to(handler.model.device, dtype=torch.float16))
if os.path.exists(video):
video_tensor = handler._get_rawvideo_dec(video, image_processor, max_frames=MAX_IMAGE_LENGTH)
for img in video_tensor:
images_tensor.append(image_processor(img, return_tensors='pt')['pixel_values'][0].to(handler.model.device, dtype=torch.float16))
if os.path.exists(video):
text_en_in = DEFAULT_IMAGE_TOKEN * len(video_tensor) + '\n' + text_en_in
if os.path.exists(image2):
text_en_in = DEFAULT_IMAGE_TOKEN + '\n' + text_en_in
if os.path.exists(image1):
text_en_in = DEFAULT_IMAGE_TOKEN + '\n' + text_en_in
text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_)
state_.messages[-1] = (state_.roles[1], text_en_out)
text_en_out = text_en_out.split('#')[0]
textbox_out = text_en_out
show_images = ""
if os.path.exists(image1):
filename = save_image_to_local(image1)
show_images += f'<img src="./file={filename}" style="display: inline-block;width: 250px;max-height: 400px;">'
if os.path.exists(image2):
filename = save_image_to_local(image2)
show_images += f'<img src="./file={filename}" style="display: inline-block;width: 250px;max-height: 400px;">'
if os.path.exists(video):
filename = save_video_to_local(video)
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={filename}"></video>'
if flag:
state.append_message(state.roles[0], textbox_in + "\n" + show_images)
state.append_message(state.roles[1], textbox_out)
return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(value=None, interactive=True))
def regenerate(state, state_):
state.messages.pop(-1)
state_.messages.pop(-1)
if len(state.messages) > 0:
return state, state_, state.to_gradio_chatbot(), False
return (state, state_, state.to_gradio_chatbot(), True)
def clear_history(state, state_):
state = conv_templates[conv_mode].copy()
state_ = conv_templates[conv_mode].copy()
return (gr.update(value=None, interactive=True), \
gr.update(value=None, interactive=True),\
gr.update(value=None, interactive=True),\
gr.update(value=None, interactive=True),\
True, state, state_, state.to_gradio_chatbot(), [])
conv_mode = "simple"
handler = Chat(model_path, conv_mode=conv_mode)
if not os.path.exists("temp"):
os.makedirs("temp")
with gr.Blocks(gr.themes.Soft()) as demo:
demo.title = 'Demo'
state = gr.State()
state_ = gr.State()
first_run = gr.State()
images_tensor = gr.State()
with gr.Row():
with gr.Column(scale=3):
image1 = gr.Image(label="Input Image1", type="filepath")
image2 = gr.Image(label="Input Image2", type="filepath")
video = gr.Video(label="Input Video")
with gr.Column(scale=6):
chatbot = gr.Chatbot(label="Chat-UniVi", bubble_full_width=True).style(height=1200)
with gr.Row():
with gr.Column(scale=8):
textbox = gr.Textbox(label="Input Text")
with gr.Column(scale=1, min_width=60, label="Input Text"):
submit_btn = gr.Button(value="Submit", visible=True)
with gr.Row(visible=True) as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
flag_btn = gr.Button(value="⚠️ Flag", interactive=True)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
submit_btn.click(generate, [image1, image2, video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, image1, image2, video])
regenerate_btn.click(regenerate, [state, state_], [state, state_, chatbot, first_run]).then(
generate, [image1, image2, video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, image1, image2, video])
clear_btn.click(clear_history, [state, state_],
[image1, image2, video, textbox, first_run, state, state_, chatbot, images_tensor])
app = gr.mount_gradio_app(app, demo, path="/")